• Title/Summary/Keyword: Cellulose Digestion

Search Result 82, Processing Time 0.033 seconds

Enhanced Anaerobic Degradation of Food Waste by Employing Rumen Microorganisms (Rumen 미생물을 이용한 주방폐기물 혐기성소화의 효율증진 방안)

  • Shin, Hang-Sik;Song, Young-Chae;Son, Sung-Sub;Bae, Byung-Uk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.1
    • /
    • pp.103-113
    • /
    • 1993
  • Every year, over $3.37{\times}10^7$ ton of municipal solid waste is generated in Korea, of which about 28% is organic food waste from restaurant, dining halls and households etc. Methane conversion of the food waste by anaerobic digestion could be a viable approach for energy recovery as well as safe disposal of the waste. However, as food waste is composed of highmolecular complex polymers such as cellulose, lignin and protein, anaerobic digestion of food waste has not been efficient in terms of volumetric loading rate, solid retention time and extent of anaerobic degradation. In this research, the improved anaerobic degradation of food waste was attemped by applying rumen microorganisms to anaerobic digestion. Acidification efficiency of food waste by rumen microorganisms was compared with that of conventional acidogenesis. And optimum acidification conditions by rumen microorganisms were also determined. For the experiments, anaerobic batch reactors of 600 mL was fed with the processed (dried and milled) food waste obtained from a restaurant. Ultimate volatile fatty acid (VFA) yield produced by rumen microorganisms was about 8.4 meq VFA/g volatile solid (VS) that is 95% of the theoretical value. This yield was not much different from that of conventional acidogenesis, but hydrolysis rate was about twice faster. Cumulative VFA concentration increased from 66 meq/L to 480 meq/L, when the initial TS was increased from 1% to 15%. But VFA yield at 15% TS was half of that at 1% TS. This inhibition on the acidification might be caused by the rapid drop of pH and higher concentration of nonionized VFA. Optimal pH and temperature range for the acidification were about 6.0~7.5 and $35{\sim}45^{\circ}C$, respectively.

  • PDF

Isolation and characterization of cellulolytic yeast belonging to Moesziomyces sp. from the gut of Grasshopper (메뚜기의 내장에서 분리한 Moesziomyces 속에 속하는 셀룰로오스 분해 효모의 분리 및 특성)

  • Kim, Ju-Young;Jung, Hee-Young;Park, Jong-Seok;Cho, Sung-Jin;Lee, Hoon Bok;Sung, Gi-Ho;Subramani, Gayathri;Kim, Myung Kyum
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.234-241
    • /
    • 2019
  • An intensive interaction between yeasts and insects has highlighted their relevance for attraction to food and for the insect's development and behavior. Yeast associated in the gut of insects secretes cellulase which aided in the food digestion (cellulose degradation). Three strains of cellulose-degrading yeast were isolated from the gut of adult grasshoppers collected in Gyeonggi Province, South Korea. The strains $ON22^T$, $G10^T$, and $G15^T$, showed positive cellulolytic activity in the carboxymethyl cellulose (CMC)-plate assay. The phylogenetic tree based on sequence analysis of D1/D2 domains of the large subunit rRNA gene and the internal transcribed spacer (ITS) regions revealed that the strains $ON22^T$ (100 and 98.4% sequence similarities in D1/D2 domains and ITS) and $G10^T$ (99.8 and 99.5% in D1/D2 domain and ITS region) were most closely related to the species Moesziomyces aphidis JCM $10318^T$; $G15^T$ (100% in D1/D2 domains and ITS) belongs to the species Moesziomyces antarcticus JCM $10317^T$, respectively. Morphology and biochemical test results are provided in the species description. Cellulase with its massive applicability has been used in various industrial processes such as biofuels like bioethanol productions. Therefore, this is the first report of the cellulolytic yeast strains $ON22^T$, $G10^T$, and $G15^T$ related to the genus Moesziomyces in the family Ustilaginaceae (Ustilaginales), in Korea.

Purification and Characterization of Chitinase from Antagonistic Bacteria Pseudomonas sp. 3098. (생물방제균 Pseudomonas sp. 3098이 생산하는 Chitinase의 정제 및 특성)

  • 이종태;김동환;도재호;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.515-522
    • /
    • 1998
  • Plant root rotting fungi, Fusarium solani are suppressed their growth by the chitinase which is produced from the antagonistic soil bacteria. The chitinase producable antagonistic bacterium Pseudomonas sp. 3098 was selected as a powerful biocontrol agent of F. solani from ginseng rhizosphere. The antagonistic Pseudomonas sp. 3098 was able to produce a large amount of extracellular chitinase which is key enzyme in the decomposition of fusarial hypal walls. The chitinase was purified from cultural filtrate of Pseudomonas sp. 3098 by the procedure of ammonium sulfate precipitation, anion exchange chromatography, gel filtration on Bio-Gel P-100, and 1st and 2nd hydroxyapatite chromatography. The molecular mass of the purified enzyme was ca. 45 kDa on SDS-FAGE. The optimal pH and temperature for the activity of purified chitinase were 5.0 and 45$^{\circ}C$, respectively. The enzyme was stable in pH range of 5.0 to 9.0 up to 5$0^{\circ}C$ The enzyme was significantly inhibited by metal compounds such as FeCl$_2$, AgNO$_3$ and HgCl$_2$, and was slightly inhibited by p-CMB, iodoacetic acid, urea, 2,4-DNP and EDTA. The enzyme had ability of digestion on colloidal chitin and chitin from shrimp shell, but could not digest chitosan and chitin from crab shell. Km value of the enzyme was 0.11% on colloidal chitin, and the maximum hydrolysis rate of the enzyme was 34% on colloidal chitin.

  • PDF

Biochemical Methane Potential of Agricultural Residues and Influence of Ensiling on Methane Production (시설농업부산물의 잠재메탄발생량 평가 및 사일로 저장에 따른 메탄 발생 변화)

  • Lee, Yu Jin;Cho, Han Sang;Kim, Jae Young;Kang, Jungu;Rhee, Sungsu;Kim, Kyuyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.765-771
    • /
    • 2012
  • In this study, the biochemical methane potentials of different agricultural residues produced from agricultural plastic greenhouse were determined. Additionally, ensiling storage practice was applied on agricultural residues for its effect on biogas production. Agricultural residues of cabbage, strawberry, tomato, cucumber, and oriental melon were selected as sample. The methane potential and biodegradability of agricultural residues ranged from 149~286 mL-$CH_4/g$-VS, 27~48% (by vol.), respectively and methane production was in order of cabbage > oriental melon > strawberry ${\approx}$ cucumber > tomato. Ensiling caused difference in methane production in a range of -11~36% (by vol.) per VS compared with raw material. An increase in methane potential was presumably linked to the organic acid accumulation, cellulose degradation and decrease in methane potential was due to chemical composition change, ammonia accumulation during the storage process.

Leucaena Seeds as Protein Supplement in the Rations of Growing Sheep

  • Singh, Sultan;Kundu, S.S.;Negi, A.S.;Gupta, S.K.;Singh, N.P.;Pachouri, V.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1433-1438
    • /
    • 2002
  • The study was carried out to evaluate leucaena seeds as a protein replacement of mustard seed cake (MSC) in the concentrate mixture of growing lambs. Fifteen owing male lambs (Local${\times}$Corridale) with an average body weight of 16.3 kg were allocated into three dietary treatments (T1, T2, and T3) with five animals in each group. Animals were offered dry mixed grass, berseem hay and concentrate mixture to meet their nutrient requirements. In concentrate mixture of T1, (Control) MSC was used as protein source, while in T2 and T3 groups, 25 and 50% of MSC was replaced by leucaena leucocephala seeds. On completion of three months (90 days) of feeding, a digestion cum-metabolism trial was conducted to determine DMI, nutrient utilization, and nitrogen balance. Changes in body weight were recorded at 15 day internals and eating patterns were recorded for 3 consecutive days at the end of the feeding trial. MSC had higher CP contents than leucaena seeds (27.0%). Mimosine contents in leucaena seeds were 1.1 compared to 0.2 and 0.4% in concentrate mixture of T2 and T3 group, respectively. Dry matter intake varied non-significantly ($79.3{\pm}1.2$ to $83.4{\pm}1.3g/kg$ $w^{0.75}$) across the dietary treatments. Digestibility of DM and cell wall polysaccharides (NDF, ADF. Cellulose and hemicellulose) were comparable, however CP digestibility was relatively lower in leucaena luecocephala seeds based groups (T2 $45.5{\pm}1.7$ and T3 $46.7{\pm}3.5$) compared to MSC supplemented group (T1 $47.7{\pm}0.9%$). The growth rate of lambs was non-significantly higher in T1 ($79.2{\pm}5.4$) compared to T2 ($73.8{\pm}8.8$) and T3 ($73.9{\pm}7.0$), respectively. The animals were in positive nitrogen balance and N-balance varied from 1.8 to 2.9 g/d across treatment groups. The eating rate (% of total offered) of concentrate up-to 15 min was relatively higher in T1 (82.4) than T2 (74.2) and T3 (77.8%). However no effect of leucaena seeds was recorded on total DMI of animals. The results of the study revealed that the inclusion of up to 50% leucaena seeds, as protein source in concentrate mixture of lambs had no adverse effect on DMI, nutrient utilization, eating patterns, nitrogen balance and growth performance of lambs.

Effect of Sodium Hydroxide plus Hydrogen Peroxide Treated Mustard (Brassica campestris) Straw Based Diets on Rumen Degradation Kinetics (In sacco), Fermentation Pattern and Nutrient Utilization in Sheep

  • Mishra, A.S.;Misra, A.K.;Tripathi, M.K.;Santra, A.;Prasad, R.;Jakhmola, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.3
    • /
    • pp.355-365
    • /
    • 2004
  • Two experiments were conducted to determine the effect of alkaline hydrogen peroxide (AHP) treatment (1% NaOH+1.5% $H_2O_2$; 1 AHPMS, 2% NaOH+1.5% $H_2O_2$; 2AHPMS) on rate and extent of degradation of mustard straw (MS) in sacco in sheep, and its in vivo digestion and ruminal fermentation characteristics when fed to sheep with concentrate (200 g per sheep daily). The treatment of straw with 1 and 2% AHP increased its sodium content by 148 and 296% to that of untreated straw (UMS). There was significant decrease in NDF and hemicellulose contents of AHP treated straw and increase in cellulose and lignin contents. Phenolic acids like ferrulic, $\rho$-coumaric and o-coumaric significantly (p<0.001) reduced by AHP treatment of mustard straw. In first experiment the in sacco degradation of DM, OM and NDF was significantly (p<0.01) greater for 2 AHPMS than for UMS at all incubation periods. The disappearance of nutrient from 1 AHPMS and 2 AHPMS treated straws continue to increase up to 96 h whereas in UMS the peak disappearance was found at 48 h. By using the equation {(y=a+b) ($1-e^{-ct}$)} the degradation rates (c) for DM, OM, and NDF were significantly higher for UMS than AHP treated straws. Level of alkali (1 and 2%) had significant effect on degradation characteristics (a, b, c and $P_{0.05}$) of DM and NDF fraction of MS. However, the effect was not pronounced on OM fraction of MS. In feeding experiment, the intake of nutrients for DM, OM, cell wall constituents and energy was higher on 2 AHPMS, whereas no effect on the digestibility of these nutrients was observed. The apparent nitrogen retention was higher (p<0.05) both in 1 and 2 AHPMS groups. Water intake by animals was significantly increased due to AHP treated mustard straw feeding. Rumen liquor pH was higher in 2 AHPMS fed animals. The $NH_3-N$ of rumen liquor was not affected by feeding of AHP treated MS based diets. Total VFA concentration was significantly (p<0.01) higher in UMS fed group. The fractional out flow rate of DM was higher (p<0.05) in animals fed on 2 AHPMS diets compared to UMS and lAHPMS fed groups. The population of large holotrichs was higher (p<0.05) on AHP treated MS fed diets compared to UMS. The study indicated that treatment of mustard straw with AHP changed its chemical composition towards a better feed. The nutritive value of 2% AHP treated mustard straw was better in terms of dry matter intake and apparent nitrogen retention. The higher in sacco DM, OM and NDF disappearance however, was not confirmed by in vivo data in this study.

Dynamic changes of yak (Bos grunniens) gut microbiota during growth revealed by polymerase chain reaction-denaturing gradient gel electrophoresis and metagenomics

  • Nie, Yuanyang;Zhou, Zhiwei;Guan, Jiuqiang;Xia, Baixue;Luo, Xiaolin;Yang, Yang;Fu, Yu;Sun, Qun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.957-966
    • /
    • 2017
  • Objective: To understand the dynamic structure, function, and influence on nutrient metabolism in hosts, it was crucial to assess the genetic potential of gut microbial community in yaks of different ages. Methods: The denaturing gradient gel electrophoresis (DGGE) profiles and Illumina-based metagenomic sequencing on colon contents of 15 semi-domestic yaks were investigated. Unweighted pairwise grouping method with mathematical averages (UPGMA) clustering and principal component analysis (PCA) were used to analyze the DGGE fingerprint. The Illumina sequences were assembled, predicted to genes and functionally annotated, and then classified by querying protein sequences of the genes against the Kyoto encyclopedia of genes and genomes (KEGG) database. Results: Metagenomic sequencing showed that more than 85% of ribosomal RNA (rRNA) gene sequences belonged to the phylum Firmicutes and Bacteroidetes, indicating that the family Ruminococcaceae (46.5%), Rikenellaceae (11.3%), Lachnospiraceae (10.0%), and Bacteroidaceae (6.3%) were dominant gut microbes. Over 50% of non-rRNA gene sequences represented the metabolic pathways of amino acids (14.4%), proteins (12.3%), sugars (11.9%), nucleotides (6.8%), lipids (1.7%), xenobiotics (1.4%), coenzymes, and vitamins (3.6%). Gene functional classification showed that most of enzyme-coding genes were related to cellulose digestion and amino acids metabolic pathways. Conclusion: Yaks' age had a substantial effect on gut microbial composition. Comparative metagenomics of gut microbiota in 0.5-, 1.5-, and 2.5-year-old yaks revealed that the abundance of the class Clostridia, Bacteroidia, and Lentisphaeria, as well as the phylum Firmicutes, Bacteroidetes, Lentisphaerae, Tenericutes, and Cyanobacteria, varied more greatly during yaks' growth, especially in young animals (0.5 and 1.5 years old). Gut microbes, including Bacteroides, Clostridium, and Lentisphaeria, make a contribution to the energy metabolism and synthesis of amino acid, which are essential to the normal growth of yaks.

Utilization of Pigments and Tunic Components of Ascidian as an Improved Feed Aids for Aquaculture 2. Chemical Properties of Sulfated Polysaccharides in Ascidian (Halocynthia roretzi) Tunic (우렁쉥이 껍질성분 및 색소를 이용한 양식소재 개발 2. 우렁쉥이 껍질 중 부분정제한 황산다당의 화학적 특성)

  • HONG Byeong-Il;JUNG Byung-Chun;JUNG Woo-Jin;RUCK Ji-Hee;CHOI Byeong-Dae;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.632-637
    • /
    • 2001
  • Components of polysaccharides isolated from ascidian tunic were measuerd by gel filtration, electrophoresis and chemical analyses. The sulfated polysaccharides consisted in sulfate, protein, uronic acid and amino sugars. Hexosamines were composed of arabinose, xylose, glucose, galactose, glucuronic acid, N-acetylgalactosamine and N-acetylglucosamine by gas chromatography analysis. The galactose was predominant hexose after autoclave and nutrase digestion followed by DEAE-cellulose ion exchange chromatography and gel-permeation chromatography on Sephadex G-100 and G-25. FT-IR spectra of isolated polysaccharides from ascidian tunic and standard chondroitin sulfates have similar functional groups of the type of vibration and frequency. Molecular weight of isolated polysaccharides by autoclave represented more than 40 kDa by polyacrylamide gel electrophoresis. But the neutrase treatment group divided into three band. The highest molecular band group was shown more than 100 kDa, and the two low molecular band group were shown about 22 kDa and 5 kDa, respectively, compare to standard materials.

  • PDF

Effects of maize straw treated with various levels of CaO and moisture on composition, structure, and digestion by in vitro gas production

  • Shi, Mingjun;Ma, Zhanxia;Tian, Yujia;Zhang, Xuewei;Shan, Huiyong
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.1940-1950
    • /
    • 2021
  • Objective: The objective of this study was to explore the effects of maize straw treated with calcium oxide (CaO) and various moisture, on the composition and molecular structure of the fiber, and gas production by fermentation in an in vitro rumen environment. Methods: The experiment used 4×3 Factorial treatment. Maize straws were treated with 4 concentrations of CaO (0%, 3%, 5%, and 7% of dry straw weight) and 3 moisture contents (40%, 50%, and 60%). Scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray fluorescence spectroscopy were employed to measure the surface texture, secondary molecular structure of carbohydrate, and calcium (Ca) content of the maize straw, respectively. The correlation of secondary molecular structures and fiber components of maize straw were analyzed by CORR procedure of SAS 9.2. In vitro rumen fermentation was performed for 6, 12, 24, 48, and 72 h to measure gas production. Results: Overall, the moisture factor had no obvious effect on the experimental results. Neutral detergent fiber (NDF), acid detergent fiber, acid detergent lignin, hemicellulose and cellulose contents decreased (p<0.05) with increasing concentrations of CaO treatment. Surface and secondary molecular structure of maize straw were affected by various CaO and moisture treatments. NDF had positive correlation (p<0.01) with Cell-H (H, height), Cell-A (A, area), CHO-2-H. Hemicellulose had positive correlation (p<0.01) with Lignin-H, Lignin-A, Cell-H, Cell-A. Ca content of maize straw increased as the concentration of CaO was increased (p<0.01). Gas production was highest in the group treated with 7% CaO. Conclusion: CaO can adhere to the surface of the maize straw, and then improve the digestibility of the maize straw in ruminants by modifying the structure of lignocellulose and facilitating the maize straw for microbial degradation.

Suitability of Counter-current Model for Biogas Separation Processes using Cellulose Acetate Hollow Fiber Membrane (셀룰로오스 아세테이트 중공사 분리막을 이용한 바이오가스 분리에 대한 향류 흐름 모델의 적용성)

  • Jung, Sang-Chul;Kwon, Ki-Wook;Jeon, Mi-Jin;Jeon, Yong-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.43-52
    • /
    • 2020
  • As the membrane gas separation technology grows, various models were developed by numerous researchers to describe the separation process. In this work, the counter-current model was compared thoroughly with experimental data. Experimentally, hollow fiber membrane using CA module was prepared for the separation of biogas. The pure gas permeation properties of membrane module for methane, nitrogen, oxygen, and carbon dioxide were measured. The permeance of CO2 and CH4 were 25.82 GPU and 0.65 GPU, respectively. The high CO2/CH4 selectivity of 39.7 was obtained. the separation test for three different simulated mixed gases were carried out after pure gas test, and the gas concentration of the permeate at various stage-cut were measured from CA membrane module. Results showed that the experimental data agreed with the numerical simulation. A mathematical model has implemented in this study for the separation of biogas using a membrane module. The finite difference method (FDM) is applied to calculate the membrane biogas separation behaviors. Futhermore, the counter-current model can be considered as a convenient model for biogas separation process.