• Title/Summary/Keyword: Cellulomonas flavigena

Search Result 21, Processing Time 0.022 seconds

Studies on the Fermentative Utilization of Cellulosic Wastes (Part 8) Mixed Culture of Cellulose Assimilating Bacteria (폐섬유자원의 발효공학적 이용에 관한 연구 (제8보) 섬유소자화세균의 혼합배양)

  • 윤한대;성낙계
    • Microbiology and Biotechnology Letters
    • /
    • v.6 no.2
    • /
    • pp.51-57
    • /
    • 1978
  • The study was made of the cultural condition and physiological characteristics of the symbiotic pair of microorganisms, Cellulomonas flavigena and the second organism. It also contains the results of a taxonomical study of the second organism. The results obtained wers summarized as follows : 1) Cell yield of the mixed culture, Cellulomonas and the second organism, was higher than that of each pure culture in CM-Cellulose medium. 2) The taxonomical characteristics of the second organism revealed that it probably belonged to the genus Sporocytophaga because it had a gliding motility and microcyst. 3) Optimum pH of the mixed culture was found to be in the vicinity of 7.2, and optimum temperature of the cell growth in the mixed culture was observed to be in the vicinity of 30$^{\circ}C$. 4) It was found that the majority of the population during growth in the mixed culture consisted of Cellulomonas flavigena. 5) Cellulomonas flavigena required thiamine and biotin as growth factors but Sporocytophaga sp. had no requirement of vitamins. 6) Gulucose was not found in detectable amounts in the medium of Cellulomonas flavigena but it was traced in the mixture by thin layer chromatography. 7) Sixteen amino acids were analyzed from the cell protein of Cellulomonas flavigena by amino acid autoanalyzer. The amount of the leucine, valine and arginine was very high.

  • PDF

Nutritional Reguirements for Growth of Cellulomonas flavigena on cellulosic substrates (Cellulose기질에서 cellulomonas flavigena의 생장에 대한 영양요구성)

  • 한윤우
    • Korean Journal of Microbiology
    • /
    • v.16 no.4
    • /
    • pp.155-160
    • /
    • 1978
  • Nutritional requirements for the growth of Cellulomonas flavigena were studied. C. flavigena grew well on cellulose when 0.005% or more of yeast extract was present in the growth medium. The growth factor in yeast extrct was, in part, thiamine and biotin. Amino acids had little effect on the growth on the organism. The extent of growth on yeast extract was much higher than that obtained on those vitamins, which indicates the presence of growth factors in yeast extract besides the vitamins, among the carbohydrates tested, the organism grew best on glucose and galactose, and the optimum N/P ratio was within the range of 0.75~3.17.

  • PDF

Interspecific Variation in the Protoplast Formation of the Genus Cellulomonas (Cellulomonas속 종간의 원형질체 형성조건의 차이에 대하여)

  • Lee, Eun-Ju;Bae, Moo
    • Korean Journal of Microbiology
    • /
    • v.24 no.2
    • /
    • pp.154-160
    • /
    • 1986
  • In order to develope interspecific fusion of the genus Cellulomonas capable of assimilation cellulose, the optimun conditions for the protoplast formation was investigated to examine the susceptibility of cell wall, between different species of the same genus using scanning electron microscope. The variation in the susceptibilities of Cellulomonas sp. CS 1-1 and C. flavigena to lysozyme treatment were considerably remarkable, although they belong to the same genus. The rate of protoplast formation of CS1-1 was 99.9% being treated with lysozyme $(100{\mu}g/ml)$ for 30 minute and that of C. flavigena was about 80% being treated at the concentration of $600{\mu}g/ml$ of lysozyme for 6 hours. The susceptibility of cell wall to the lysozyme treatment on protoplast formation of the strain, CS1-1 seems not to be depend on the cultural periods of cells. On the contrary, that of C. flavigena was considerably depend on the periods. Cells of C. flavigena at mid exponential phase could be more efficiently converted to protoplast cells than those at late exponential phase be done. The rate of the protoplast formation was 95%, when cells of C. flavigena at mid exponential phase were treated with lysozyme $600{\mu}g/ml$ for 6 hours and observed by SEM. In the evalution of protoplast formation of the CS1-1 results of counting method in plate after osmotic shock treatment were similar to the results of the direct observation method by means of SEM. But in the case of C. flavigena the latter method was much more reliable than the former, because the differences between the number of spheroplasts and protoplasts were not able to figure out on conuting the number of protoplast after osmotic shock tretment.

  • PDF

Studies on the Protoplast Formation of Cellulomonas flavigena and its Observations under Scanning Electron Microscope (Cellulomonas flarigena의 원형질체 형성과 주사전자현미경적 연구)

  • Bae, Moo;Lee, Eun-Ju
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.175-179
    • /
    • 1986
  • In order to develope a protoplast fusion of the genus Cellulomonas having high assimilibility of cellulose, the optimum conditions for the protoplast formation of Cellulomonas flavigena NCIB 12901 was investigated and observed by means of Scanning Electron Microscope. The results suggested that the susceptibility of the cell wall by lysozyme treatment on protoplast formation was considerably depend on the cultural periods of the cells. Cells of C. flavigena at mid exponential phase could more efficiently convert to protoplast cells than those at late exponential phase did. The rate of the protoplast formation was 95%, even though the rate was over 99.9% on counting by indirect method after osmotic shock treatment, when cells of the organism at mid exponential phase were treated with lysozyme (400$\mu\textrm{g}$/$m{\ell}$) for 6 hours and observed by SEM. In the evaluation of protoplast formation of the genus Cellulomonas, direct method of the observation under Scanning Electron Microscope was much more reliable than the counting method of protplasts after osmotic shock treatment. Because defferences between the number of spheroplast and protoplast were not able to be figured out on counting the number of protoplast after osmotic shock treatment.

  • PDF

Physiological Characteristics of Fusants by Interspecific Protoplast Fusion of the Genus Cellulomonas (Cellulomonas 속 종간 원형질 융합체의 특성)

  • Bae, Moo;Lim, Jung-Hwa
    • Korean Journal of Microbiology
    • /
    • v.28 no.1
    • /
    • pp.47-54
    • /
    • 1990
  • In order to investigate physiological characteristics of fusants by interspecific protoplast fusion of the genus Cellulomonas, protoplasts of Cellulomonas flavigena NCIB 12901 and Cellulomonas bibula NCIB 8142 were fused and cell wall regenerated. To give gene maker, C. bibula was treated with 500 ug/ml NTG for 1 hr and arginine requiring auxotrophic mutants were isolated. Protoplasts of the genus Cellulomonas were obtained by treatment with $600{\mu}{\textrm{g}}$/ml lysozyme, and 0.5M sorbitol was optimal for osmotic stabilizer on protoplast fromation. Protoplast fusion was enhanced by 40% PEG)M.W.6,000) containing 25 mM $CaCl_{2}$ at $30^{\circ}C$ for 30 min and fusion frequency between C. bibula and C. flavigena was $5\times 10^{-4}$. Processes of protoplast formation, cell wall regeneration and protoplast fusion were obsdrved by scanning electron microscope. By comparing enzyme activities of cellulase, exocellobiohydrolase, .betha.-glucosidase of the parent strains of Cellulomonas with those of thier mutants and fusants, fusants with increased enzyme activity were obtained. By the studies on nutritional requirement, antibiotic resistance, cellulolytic enzyme activities, type of peptidoglycan and motility of two mutants and fusants, fusants were proved to be recombinant of both mutant strains.

  • PDF

Development of succinate producing Cellulomonas flavigena mutants with deleted succinate dehydrogenase gene

  • Lee, Heon-Hak;Jeon, Min-Ki;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.1
    • /
    • pp.30-39
    • /
    • 2017
  • This study was performed to produce succinic acid from biomass by developing mutants of Cellulomonas flavigena in which the succinate dehydrogenase gene (sdh) is deleted. For development of succinate producing mutants, the upstream and downstream regions of sdh gene from C. flavigena and antibiotic resistance gene (neo, bla) were inserted into pKC1139, and the recombinant plasmids were transformed into Escherichia coli ET12567/pUZ8002 which is a donor strain for conjugation. C. flavigena was conjugated with the transformed E. coli ET12567/pUZ8002 to induce the deletion of sdh in chromosome of this bacteria by double-crossover recombination. Two mutants (C. flavigena H-1 and H-2), in which sdh gene was deleted in the chromosome, were constructed and confirmed by PCR. To estimate the production of succinic acid by the two mutants when the culture broth was fermented with biomass such as CMC, xylan, locust gum, and rapeseed straw; the culture broth was analyzed by HPLC analysis. The succinic acid in the culture broth was not detected as a fermentation products of all biomass. One of the reasons for this may be the conversion of succinic acid to fumaric acid by sdh genes (Cfla_1014 - Cfla_1017 or Cfla_1916 - Cfla_1918) which remained in the chromosomal DNA of C. flavigena H-1 and H-2. The other reason could be the conversion of succinyl-CoA to other metabolites by enzymes related to the bypass pathway of TCA cycle.

Pretreatment and enzymatic saccharification process of rapeseed straw for production of bioethanol

  • Lee, Heon-Hak;Jeon, Min-Ki;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.641-649
    • /
    • 2016
  • This study was conducted to evaluate the yield of bio-ethanol produced by separate hydrolysis and fermentation (SHF) with the pretreated rapeseed straw (RS) using crude enzyme of Cellulomonas flavigena and Saccharomyces cereviase. Crude enzyme of C. flavigena showed enzymatic activity of 14.02 U/mL for CMC 133.40 U/mL, for xylan 15.21 U/mL, for locust gum and 15.73 U/mL for rapeseed straw at pH 5.0 and $40^{\circ}C$, respectively. The hemicellulose contents of RS was estimated to compromise 36.62% of glucan, 43.20% of XMG (xylan + mannan + galactan), and 2.73% of arabinan by HPLC analysis. The recovering ratio of rapeseed straw were investigated to remain only glucan 75.2% after 1% $H_2SO_4$ pretreatment, glucan 45.44% and XMG 32.13% after NaOH, glucan 44.75% and XMG 5.47% after $NH_4OH$, and glucan 41.29% and XMG 41.04% after hot water. Glucan in the pretreatments of RS was saccharified to glucose of 45.42 - 64.81% by crude enzyme of C. flavigena while XMG was made into to xylose + mannose + galactose of 58.46 - 78.59%. Moreover, about 52.88 - 58.06 % of bio-ethanol were obtained from four kinds of saccharified solutions by SHF using S. cerevisiae. Furthermore, NaOH pretreatment was determined to show the highest mass balance, in which 21.22 g of bio-ethanol was produced from 100 g of RS. Conclusively, the utilization of NaOH pretreatment and crude enzyme of Cellulomonas flavigena was estimated to be the best efficient saccharification process for the production of bio-ethanol with rapeseed straw by SHF.

Protoplast Regeneration and Interspecific Fusion of the Genus Cellulomonas (Cellulomonas속 원형질체 재생과 종간 융합조건)

  • Bae, Moo;Cho, Bo-Yeon
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.4
    • /
    • pp.303-309
    • /
    • 1988
  • In order to establish the process of interspecific protoplast fusion of the genus Cellulomonas capable of utilizing of cellulose, C. flavigena NCIB 12901 and Cellulomonas sp. CSI-1, the optimum conditions for the regeneration and fusion were examined. The condition of suitable osmotic stabilizer for the protoplast regeneration of C. flavigena was established by using 0.4M sorbitol. And then, by addition of 3% po]yvinyl pyrrolidone (PVP) to cell wall regeneration medium, regeneration frequency was increased 3 times higher than that without PVP addition. The optimum conditions for the interspecific protoplast fusion between auxotrophic and antibiotics resistant mutants were obtained with 40%(W/V) of PEG (polyethylene glycol) 6000 as the fusogenic agent and 25mM of CaCl$_2$on treating time for 15 min. The fusion frequency between mutants was from 2.0$\times$10$^{-4}$ to 4.0$\times$10$^{-4}$ under the optimum conditions. The fusants were confirmed to revert from protoplast to cells of rod type during regeneration process and the aggregation of protoplast by PEG was observed. Also the progress of fusion was observed by scanning electron microscopy, Many isolated fusants were shown to be complement clones of both parents which occured at a high frequency among the isolated clones.

  • PDF

Studies on the Fermentative Utilization of Cellulosic Wastes.(Part IV) Isolation and Identification of Cellulose Assimilating Bacteria. (폐섬유자원의 기효공학적 이용에 관한 연구(제IV보)섬유질 자화세균의 분이및 동정)

  • 성낙기;신기환
    • Microbiology and Biotechnology Letters
    • /
    • v.5 no.1
    • /
    • pp.1-4
    • /
    • 1977
  • In order to produce cellulosic single cell protein from the cellulosic wastes, 252 strains of cellulose assimilating bacteria were isolated front 225 sources of microorganisms such as decomposed wood, compost soils, soils, cotton fabrics and useless paper. The isolates were investigated for their ability to utilize cellulose as carbon source. One of them was screened by its stong cellulose assimilating abililty, and was identified as Cellulomonas flavigena.

  • PDF

Development of L-Lysine Producing Strains from Cellulosic Substrate by the Intergeneric Protoplast Fusion - Conditions for Fusion and Properties of Fusants- (속간 원형질체 융합에 의한 섬유질 기질로부터 L-Lysine 생산균주 개발 -융합조건 및 융합체의 성질 -)

  • 성낙계;정덕화;박법규;정영철;전효곤
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.3
    • /
    • pp.175-181
    • /
    • 1988
  • To produce L-lysine from cellulosic substrate, the intergeneric protoplast fusion between Cellulomonas flavigena and Corynebacterium glutamicum, Cellulomonas flavigena and Brevibacterium flavum was performed. The fusion frequencies were 1.9$\times$10$^{-6}$ to 2.1$\times$10$^{-6}$ for the regenerated protoplasts when two parental strains were treated with 30% of polyethyleneglycol (M.W.6000) containing 5 mM EDTA at 3$0^{\circ}C$ for 30 min. Two fusants, FCB3 and FCC 19 were finally selected by comparision of their genetic stability and L-lysine productivity. The properties of fusants-DNA con-tent, G+C content and L-lysine productivity-were investigated. The DNA content of fusants was greater than those of the parental strain and their G+C contents are equal to half of total G+C con-tent of two parental strains. The fusants showed high productivity of L-lysine from carboxy methyl cellulose as substrate.

  • PDF