• 제목/요약/키워드: Cellulases

검색결과 107건 처리시간 0.025초

Exploiting Gastrointestinal Microbes for Livestock and Industrial Development - Review -

  • Singh, Birbal;Bhat, Tej K.;Singh, Bhupinder
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권4호
    • /
    • pp.567-586
    • /
    • 2001
  • Gastrointestinal tract of ruminants as well as monogastric animals are colonised by a variety of microorganisms including bacteria, fungi and protozoa. Gastrointestinal ecosystem, especially the rumen is emerging as an important source for enrichment and natural selection of microbes adapted to specific conditions. It represents a virtually untapped source of novel products (e.g. enzymes, antibiotics, bacteriocins, detoxificants and aromatic compounds) for industrial and therapeutic applications. Several gastrointestinal bacteria and fungi implicated in detoxification of anti-nutritional factors (ANFs) can be modified and manipulated into promising system for detoxifying feed stuffs and enhancing fibre fermentation both naturally by adaptation or through genetic engineering techniques. Intestinal lactobacilli, bifidobacteria and butyrivibrios are being thoroughly investigated and widely recommended as probiotics. Restriction endonucleases and native plasmids, as stable vectors and efficient DNA delivery systems of ruminal and intestinal bacteria, are increasingly recognised as promising tools for genetic manipulation and development of industrially useful recombinant microbes. Enzymes can improve the nutrient availability from feed stuffs, lower feed costs and reduce release of wastes into the environment. Characterization of genes encoding a variety of commercially important enzymes such as cellulases, xylanases, $\beta$-glucanases, pectinases, amylases and phytases will foster the development of more efficacious and viable enzyme supplements and enzyme expression systems for enhancing livestock production.

The gene repertoire of Pythium porphyrae (Oomycota) suggests an adapted plant pathogen tackling red algae

  • Badis, Yacine;Han, Jong Won;Klochkova, Tatyana A.;Gachon, Claire M.M.;Kim, Gwang Hoon
    • ALGAE
    • /
    • 제35권2호
    • /
    • pp.133-144
    • /
    • 2020
  • Pythium porphyrae is responsible for devastating outbreaks in seaweed farms of Pyropia, the most valuable cultivated seaweed worldwide. While the genus Pythium contains many well studied pathogens, the genome of P. porphyrae has yet to be sequenced. Here we report the first available gene repertoire of P. porphyrae and a preliminary analysis of pathogenicity-related genes. Using ab initio detection strategies, similarity based and manual annotation, we found that the P. porphyrae gene repertoire is similar to classical phytopathogenic Pythium species. This includes the absence of expanded RxLR effector family and the detection of classical pathogenicity-related genes like crinklers, glycoside hydrolases, cellulose-binding elicitor lectin-like proteins and elicitins. We additionally compared this dataset to the proteomes of 8 selected Pythium species. While 34% of the predicted proteome appeared specific to P. porphyrae, we could not attribute specific enzymes to the degradation of red algal biomass. Conversely, we detected several cellulases and a cutinase conserved with plant-pathogenic Pythium species. Together with the recent report of P. porphyrae triggering disease symptoms on several plant species in lab-controlled conditions, our findings add weight to the hypothesis that P. porphyrae is a reformed plant pathogen.

Bioconversion of Straw Into Improved Fodder: Mycoprotein Production and Cellulolytic Acivity of Rice Straw Decomposing Fungi

  • Helal, G.A.
    • Mycobiology
    • /
    • 제33권2호
    • /
    • pp.90-96
    • /
    • 2005
  • Sixty two out of the sixty four species of fungal isolates tested could produce both $exo-{\beta}1,4-gluconase\;(C_1)$ and $endo-{\beta}1,4-gluconase\;(C_x)$ on pure cellulose and rice straw as carbon source in Czapek's medium. Fifty-eight and fifteen species were able to grow at $25^{\circ}C$ and at $45^{\circ}C$, respectively. Eleven species could grow at both $25^{\circ}C$ and $45^{\circ}C$ while, four species appeared only at $45^{\circ}C$. The most cellulolytic species at $25^{\circ}C$ was Trichoderma koningii producing 1.164 $C_1$ (mg glucose/1 ml culture filtrate/1 hr) and 2.690 $C_x$ on pure cellulose, and 0.889 $C_1$, and 1.810 $C_x$ on rice straw, respectively. At $45^{\circ}C$, the most active thermotolerant species were Aspergillus terreus, followed by A. fumigatus. Talaromyces thermophilus was the highest active thermophilic species followed by Malbranchea sulfurea. Most of these species were also active in fermentation of rice straw at 25 and $45^{\circ}C$ (P<0.05). The most active ones were T. koningii, A. ochraceus and A. terreus, which produced 201.5, 193.1 and 188.1 mg crude protein/g dry straw, respectively.

Cellulase Production in the Digestive Organs of Reticulitermes speratus, a Native Termite from Milyang, Korea

  • Lee, Young-Min;Kim, Yoon-Hee;Cho, Moon-Jung;Shin, Keum;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권5호
    • /
    • pp.421-428
    • /
    • 2010
  • This study investigated on enzyme production in the digestive organs of the native termite (Reticulitermes speratus) in Milyang, Korea. Four types of major cellulases [EG (endo-1,4-${\beta}$-glucanase), BGL (${\beta}$-glucosidase), CBH (cellobiohydrolase) and BXL (${\beta}$-1,4-xylosidase)] were present in the digestive organs of the termite. The strong enzyme activity for BGL was found from the native termite, and also shown that the enzyme was distributed in the salivary gland, foregut, and hindgut. BXL, which breaks down hemicellulose near the amorphous region, was detected mainly from salivary gland, foregut, and midgut. However, CBH was distributed mainly in the hindgut. Meanwhile, EG which degrades cellulose, was found mainly in the hindgut and salivary glands. These facts indicate that celluases production patterns are differ from different sites compare to the same species found in Japan, suggesting that enzyme production in the digestive organs of termites is changed according to their habitats.

Bacillus licheniformis WL-12의 cellulase 유전자 클로닝과 발현 (Cloning and Expression of A Bacillus licheniformis Cellulase Gene)

  • 윤기홍
    • 미생물학회지
    • /
    • 제42권4호
    • /
    • pp.313-318
    • /
    • 2006
  • 가정에서 제조된 된장으로부터 cellulase 생산균으로 분리된 고온성 WL-12는 형태적 특성, 생화학적 성질 및 16S rRNA의 염기서열에 근거하여 Bacillus licheniformis로 동정되었다. B. licheniformis WL-12의 cellulase 유전자를 클로닝하여 그 염기서열을 결정한 결과 cellulase 유전자(celA)는 517 아미노산으로 구성된 단백질을 코드하며 1,551 뉴클레오티드로 이루어졌다. 아미노산 잔기배열을 분석한 결과 WL-12의 cellulase는 활성영역과 cellulose 결합영역으로 구성되어 있었으며, glycosyl hydrolase (GH) family 5에 속하는 B. licheniformis, B. subtilis와 B. amyloliquefaciens의 cellulase와 높은 상동성을 보였다. 클론된 celA를 발현용 vector에 도입하여 B. subtilis에서 발현시켜 cellulase 최대생산성이 7.0 units/ml에 이르렀다.

전처리에 의한 리오셀의 피브릴레이션 변화 -NaOH와 효소 처리 중심으로- (Fibril Removal from Lyocell by Enzymatic Treatment -Compare NaOH Pre-treatment with Treating Enzyme)

  • 박지양;김주혜;전동원;박영환
    • 한국의류학회지
    • /
    • 제30권8호
    • /
    • pp.1323-1332
    • /
    • 2006
  • Lyocell is a regenerated cellulose fiber manufactured by an environmentally-friendly process. Since the fiber has more crystalline region compared to rayon, lyocell shows higher wet-strength than rayon. Although fibril generation of lyocell is lower than that of rayon because of the reason, the fibril generated during the wet process deteriorates the smooth look and soft touch of the fabric. The efficient way to remove the fibril yet retain the strength property was investigated in this work. In order to scour and remove the fibril from the fabric, cellulase enzymes were introduced and the traditional scouring was carried to be compared. Weight loss, dye-ability, and strength of treated fabric were measured after the treatments. Scanning electron microscopy was used to observe the surface of the fiber. Among the cellulases used in this work, Denimax 992L showed the best results for removal of fibril with low weight loss and tensile strength loss. The optimal conditions for the enzymatic treatment could be chosen depending on a characteristic for final purpose of the lyocell product.

Molecular Cloning of a Cellulase Gene from Abalone Haliotis discus hannai and Its Expression in E coli

  • Park, Eun-Mi;Han, Yun-Hee;Park, In-Suk;Nam, Bo-Hye;Kong, Hee Jeong;Kim, Woo-Jin;Lee, Sang-Jun;Kim, Young-Ok
    • 한국해양바이오학회지
    • /
    • 제2권2호
    • /
    • pp.108-112
    • /
    • 2007
  • A cellulase (endo-${\beta}$-1,4-D-glucanase(E.C.3.2.1.4)) was isolated from the hepatopancreas of abalone Haliotis discus hannai by EST analysis. The abalone cellulase named HdEG compassed 1977 bp, including 195 bp in the 5'untranslated region, 1680 bp in the open reading frame which encodes 560 amino acid residues, and 92 bp in the 3'-untranslated region. The C-terminal region of the HdEG showed 44-52% identity to the catalytic domains of glycoside hydrolase family 9 (GHF9)-cellulases from arthropods and bacteria. The recombinant cellulase, pEHdEG was produced in E. coli with being fused with C-terminal His-tag. The expressed protein showed a single band (~62 kDa) on Western blotting which was consistent with the value (61,878 Da) calculated from the DNA sequence.

  • PDF

Comparison of Dyes for Easy Detection of Extracellular Cellulases in Fungi

  • Yoon, Ji-Hwan;Park, Ji-Eun;Suh, Dong-Yeon;Hong, Seung-Beom;Ko, Seung-Ju;Kim, Seong-Hwan
    • Mycobiology
    • /
    • 제35권1호
    • /
    • pp.21-24
    • /
    • 2007
  • To evaluate which dye is effective in a plate assay for detecting extracellular cellulase activity produced by fungi, four chromogenic dyes including remazol brilliant blue, phenol red, congo red, and tryphan blue, were compared using chromagepic media. For the comparison, 19 fungal species belonging to three phyla, ascomycota, basidiomycota, and zygomycota were inoculated onto yeast nitrogen-based media containing different carbon substrates such as cellulose (carboxylmethyl and avicel types) and cellobiose labeled with each of the four dyes. Overall, the formation of clear zone on agar media resulting from the degradation of the substrates by the enzymes secreted from the test fungi was most apparent with media containing congo red. The detection frequency of cellulase activity was also most high on congo red-supplemented media. The results of this study showed that congo red is better dye than other three dyes in, a plate assay for, fungal enzyme detection.

수종의 Aspergillus 속 균 사이의 핵전이에 의한 종간잡종 형성 (Construction of Interspecific Hybrids detween Aspergillus spp. by Nuclear transfer)

  • 노형선;이정애;이영하;김진미;정재훈;맹필재
    • 미생물학회지
    • /
    • 제29권1호
    • /
    • pp.8-15
    • /
    • 1991
  • Interspecific hybrids between the ASpergillus spp., A. awamori, A. usamii and A. oryzae, were obtained by nuclear transfer technique. Nuclei isolated from an auxotrophic mutant strain were transferred into the protoplasts of a recipient strain of different species. The frequency of interspecific hybrid formation by nuclear transfer was $2*10^{-5}$ $-7*10^{-4}$ In contrast, no interspecific hybrid was isolated by protoplast fusion. Among the hybrids tested, 10 strains showed increased activity of some or all components of cellulases, xylanases and amylase up to more than two times. Isozyme pattern of the hybrids were analyzed by polyacrylamide gel electrophoresis and isoelectric focusing followed by activity staining, which showed that some of the hybrids have isozyme patterns unidentical to either of the two parents. By measuring the DNA contents and the sizes ofthe conidia, the karyotypes of the hybrids were estimated to be aneuploid near to haploid, diploid or triploid. It was concluded that the unclear transfer technique is much more efficient in the formation of interspecific hybrids than protoplast fusion and is very useful for the improvement of Aspergillus strains.

  • PDF

Production, Purification, and Characterization of Antifungal Metabolite from Pseudomonas aeruginosa SD12, a New Strain Obtained from Tannery Waste Polluted Soil

  • Dharni, Seema;Alam, Mansoor;Kalani, Komal;Abdul-Khaliq, Abdul-Khaliq;Samad, Abdul;Srivastava, Santosh Kumar;Patra, Dharani Dhar
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권5호
    • /
    • pp.674-683
    • /
    • 2012
  • A new strain, SD12, was isolated from tannery waste polluted soil and identified as Pseudomonas aeruginosa on the basis of phenotypic traits and by comparison of 16S rRNA sequences. This bacterium exhibited broad-spectrum antagonistic activity against phytopathogenic fungi. The strain produced phosphatases, cellulases, proteases, pectinases, and HCN and also retained its ability to produce hydroxamate-type siderophore. A bioactive metabolite was isolated from P. aeruginosa SD12 and was characterized as 1-hydroxyphenazine ((1-OH-PHZ) by nuclear magnetic resonance (NMR) spectral analysis. The strain was used as a biocontrol agent against root rot and wilt disease of pyrethrum caused by Rhizoctonia solani. The stain is also reported to increase the growth and biomass of Plantago ovata. The purified compound, 1-hydroxyphenazine, also showed broad-spectrum antagonistic activity towards a range of phytopathogenic fungi, which is the first report of its kind.