• Title/Summary/Keyword: Cellulase Addition

Search Result 140, Processing Time 0.024 seconds

Effects of Combined Treatments of Lactic Acid Bacteria and Cell Wall Degrading Enzymes on Fermentation and Composition of Italian Ryegrass (Lolium multiflorum Lam.) Silage

  • Ridla, M.;Uchida, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.3
    • /
    • pp.277-284
    • /
    • 1998
  • This experiment was carried out to study the effects of lactic acid bacteria (LAB) inoculation and addition of cell wall degrading enzymes on the fermentation characteristics and chemical compositions of Italian ryegrass silage. An inoculant LAB with or without a cell wall degrading enzyme of Acremoniumcellulase (A), or Meicellulase (M) or a mixture of both (AM), was applied to 1 kg of fresh Italian ryegrass sample. The treatments were control untreated, LAB-treated (application rate $10^5$ cfu/g fresh sample), LAB+A 0.005%, LAB + A 0.01%, LAB+A 0.02%, LAB + M 0.005%, LAB + M 0.01%, LAB + M 0.02%, LAB+AM 0.005%, LAB + AM 0.01% and LAB+AM 0.02%. The sample was ensiled into 2-L vinyl bottle silo, with 9 silages of each treatment were made (a total of 99 silages). Three silages of each treatment were incubated at 20, 30 and $40{^{\circ}C}$ for an approximately 2-months storage period. All silages were well preserved as evidenced by their low pH values (3.79-4.20) and high lactic acid concentrations (7.71-11.34% DM). The fermentation quality and chemical composition of the control untreated and the LAB-treated silages were similar, except that for volatile basic nitrogen (VBN) content was lower (p < 0.05) in the LAB-treated silages. LAB + cellulase treatments improved the fermentation quality of silages by decreasing (p < 0.01) pH values and increasing (p<0.01) lactic acid concentrations, in all of cellulase types and incubation temperatures. Increasing amount of cellulase addition resulted in further decrease (p < 0.01) of pH value and increases (p < 0.01) of lactic acid and residual water soluble carbohydrate (WSC) concentrations. LAB + cellulase treatments reduced (p<0.01) NDF, ADF, hemicellulose and cellulose contents of silages compared with both the control untreated and LAB-treated silages. LAB + cellulase treatments did not affect the silage digestibility due to fact of in vitro dry matter digestibility (IVDMD) was similar in all silages. The silages treated with cellulase A resulted in a better fermentation quality and a higher rate of cell wall reduction losses than those of the silages treated with cellulases M and AM. Incubation temperature of $30{^{\circ}C}$ seemed to be more suitable for the fermentation of Italian ryegrass silages than those of 20 and $40{^{\circ}C}$.

Effects of Isolated and Commercial Lactic Acid Bacteria on the Silage Quality, Digestibility, Voluntary Intake and Ruminal Fluid Characteristics

  • Ando, Sada;Ishida, M.;Oshio, S.;Tanaka, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.386-389
    • /
    • 2006
  • Silage is a major component of cattle rations, so the improvement of silage quality by the inoculation of lactic acid bacteria is of great interest. In this study, commercially distributed Lactobacillus plantram and Lactobacillus rhamnousas NGRI 0110 were used for ensilaging of guinea grass. The four treatments used were a control silage, a silage with cellulase addition, a silage with cellulose+L. plantram addition, and a silage with cellulose + NGRI 0110 addition. Silage quality, voluntary intake, nutrient digestibility, and the characteristics of ruminal fluid of wethers were investigated. Silage to which lactic acid bacteria were added showed low pH and acetic acid concentration and the highest lactic acid content. Dry matter and organic matter digestibility were significantly (p<0.05) increased by cellulase addition and significantly (p<0.05) higher values were observed in L. plantram- and NGRI 0110-added silage. Voluntary intake of NGRI 0110-added silage was the highest and that of control silage was the lowest. We concluded that the observed ability of NGRI 0110 to tolerate low pH and to continue lactic acid fermentation in high lactic acid concentration had also occurred in actual ensilaging. The results indicate that the addition of lactic acid bacteria might improve silage quality and increase digestibility and voluntary intake. The potential for improvement by NGRI 0110 was higher than that to be gained by the use of commercially available lactic acid bacteria.

Improving Cellulase Production in Trichoderma koningii Through RNA Interference on ace1 Gene Expression

  • Wang, Shao-Wen;Xing, Miao;Liu, Gang;Yu, Shao-Wen;Wang, Juan;Tian, Sheng-Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1133-1140
    • /
    • 2012
  • Ribonucleic acid interference (RNAi) inhibits the expression of target genes in a sequence-specific manner, and shows potential for gene knockdown in filamentous fungi, in which the locus-specific gene knockout occurs in low frequency. In this study, the function of the repressor of cellulase expression I (ACEI) was verified in Trichoderma koningii (T. koningii) YC01 through RNAi, and ace1-silenced strains with improved cellulase productivity were obtained. An expression cassette that transcribed the interfering double-stranded RNA (dsRNA) of ace1 was constructed and transformed into T. koningii, and the transformants, in which the expression of ace1 was successfully silenced, were selected. As a result of the ace1 gene silencing, the expression levels of the main cellulase and xylanase genes were elevated, and the enhanced production of total proteins, cellulase, and xylanase was observed in the cultivation. In addition, the down-regulation of ace1 resulted in an increasing expression of xyr1, but no clear variation in the expression of cre1, which suggested that ACEI acted as a repressor of the xyr1 transcription, but was not involved in the regulation of the cre1 expression. The results of this work indicate that ace1 is a valid target gene for enhancing enzyme production in T. koningii, and RNAi is an appropriate tool for improving the properties of industrial fungi.

Usage of Enzyme Substrate to Protect the Activities of Cellulase, Protease and α-Amylase in Simulations of Monogastric Animal and Avian Sequential Total Tract Digestion

  • Wang, H.T.;Hsu, J.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1164-1173
    • /
    • 2006
  • Cellulase from Aspergillus niger, (${\alpha}$-amylase from Bacillus sp. and protease from Bacillus globigii were used as enzyme sources in this study to examine how their respective substrates protect them in two kinds of simulated gastrointestinal tract digesting processes. Avian total digest tract simulation test showed that filter paper, Avicel and cellulose resulted in 7.7, 6.4 and 7.4 times more activity than of unprotected cellulose, respectively. Protease with addition of casein, gelatin or soybean protein showed no significant protection response. Starch protected amylase to be 2.5 times activity of the unprotected one. Monogastric animal total tract digestion simulation test showed that filter paper, Avicel and cellulose resulted in 5.9, 9.0 and 8.8 times activity of unprotected cellulase, respectively. Casein, gelatin and soybean protein resulted in 1.2, 1.3 and 2.0 times activity of unprotected protease, respectively. Starch did not protect amylase activity in monogastric animal total tract simulation. Protection of mixed enzymes by substrates in two animal total tract simulation tests showed that filter paper in combination with soybean protein resulted in 1.5 times activity of unprotected cellulose, but all substrates tested showed no significant protection effect to protease. Soybean protein and starch added at the same time protected the amylase activity to be two times of the unprotected one. Test of non-purified substrate protection in two animal total digest tract simulation showed that cellulase activity increased as BSA (bovine serum albumin) concentration increased, with the highest activity to be 1.3 times of unprotected enzyme. However, BSA showed no significant protection effect to protease. Amylase activity increased to 1.5 times as BSA added more than 1.5% (w/v). Cellulase activity increased to 1.5 times as soybean hull was added higher than 1.5%. Amylase had a significant protection response only when soybean hull added up to 2%. Protease activity was not protected by soybean hull to any significant extent.

Effect of Carbon Source on the Hydrolytic Ability of the Enzyme from Fomitopsis pinicola for Lignocellulosic Biomass

  • Kim, Hyun-Jung;Kim, Yoon-Hee;Shin, Keum;Kim, Tae-Jong;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.429-438
    • /
    • 2010
  • In this study, effect of carbon source on the hydrolytic ability of the enzyme from Fomitopsis pinicola, a brown rot fungi, for lignocellulosic biomass were examined on two lignocellulosic biomasses (rice straw and wood) without any pretreatment. Cellulase activities of crude enzyme from F. pinicola, which was cultured on softwood mixture as a carbon source, were 19.10 U/$m{\ell}$ for endo-${\beta}$-1,4-gulcanase (EG), 36.1 U/$m{\ell}$ for ${\beta}$-glucosidase (BGL), 7.27 U/$m{\ell}$ for cellobiohydrolase (CBH), and 7.12 U/$m{\ell}$ for ${\beta}$-1,4 xylosidase (BXL). Softwood mixture as a carbon source in F. pinicola comparatively enhanced cellulase activities than rice straw. The optimal pH and temperature of the cellulase was identified to pH 5 and $50^{\circ}C$for the hydrolysis of rice straw. Under these condition rice straw was hydrolyzed to glucose by the cellulase up to $32.0{\pm}3.1%$ based on the glucan amount of the rice straw for 72 h, while the hydrolytic capability of commercial enzyme (Celluclast 1.5${\ell}$) from rice straw to glucose was estimated to $53.7{\pm}4.7%$ at the same experimental condition. In case of addition of Tween 20 (0.1% w/w, substrate) to the cellulase the hydrolysis of rice straw to glucose was enhanced to $38.1{\pm}2.0%$.

Pilot-Scale Production of Cellulase Using Trichoderma reesei Rut C-30 Fed-Batch Mode

  • Lee, Sang-Mok;Koo, Yoon-Mo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.229-233
    • /
    • 2001
  • Trichoderma reesei Rut C-30 produced high levels of ${\beta}$-glucosidase, endo-${\beta}$-glucosidase, endo-${\beta}$-1,4-glucanase, and exo-${\beta}$-1,4-glucanase. In pilot-scale production (50-1 fermentor), productivity and yield of CMCase (carborymethyl cellulose) and FPase (filter paper activity) were 273 U/ml and 35 U/ml, and 162 FPU/l.h and 437 FPU/g, respectively. The fed-batch techniques were used to improve enzyme activities with constant cell concentration. The acidity was an important parameter and controlled at pH 3.9 and 5.0 by automatic addition of ammonium hydroxide. Cellulase powder was prepared by ammonium sulfate precipitation and its CMCase and FPase activities were 3,631 U/g and 407 U/g, respectively.

  • PDF

Isolation and characterization of Bacillus sp. KD1014 producing carboxymethyl-cellulase (Isolation and Characterization of Bacillus sp. KD1014 Producing Carboxymethyl-Cellulase)

  • Lee, Kyung Dong;Kim, Jong Ho;Kim Hoon
    • Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.305-310
    • /
    • 1996
  • A microorganism producing carboxymethyl-cellulase (CMCase) was isolated from 300 soil and compost samples. The isolate was identified as Bacillus sp. by $Biolog^{TM}$ test and fatty acid analysis, and named as Bacillus sp. KD1014. The isolate could degrade, in addition to CMC, various kinds of polysaccharides such as levan, xylan, starch, and filter paper but hardly degrade microcrystalline Avicel. The optimum growth and CMCase production of the isolate was observed between 16-and 25 hr-culture at 45$^{\circ}C$ and pH 5.0. The maximum CMCase activity was observed at pH 4.5 and 6$0^{\circ}C$. The CMCase was found to bind to Avicel. The CMCase was internally cleaved as growth continued. When crude supernatant was used for activity staining, three major bands were detected on a native gel, however, only one major band was detected on a denaturating gel after removal of the detergent.

  • PDF

A role and properties of C/sub 1/ enriched cellulase fraction from anaerobic clostridium thermocellum in cellulose degradation (섬유소 분해시 혐기성 Clostridium thermocellum이 생산하는 Cellulase의 C/sub 1/ 성분의 역할과 성질)

  • Lee, Yong Hyeon;Sim, Uk Han;Sin, Hyeon Dong
    • Korean Journal of Microbiology
    • /
    • v.25 no.4
    • /
    • pp.297-297
    • /
    • 1987
  • A $C_{1}$ enriched cellulase fraction was separated from culture filtrate of anaerobic Clostridium thermocellum by hydroxyapatite column chromatography. The separated fraction showed strong synergistic action with $C_{x}$ component (endo-$\beta$-1, 4-glucanase) in digestion of crystalline cellulose, similar to the other aerobic cellulolytic microorganisms. Unlike the $C_{x}$ component the $C_{1}$ enriched fraction was rapidly inactivated by oxidation at the atmospheric condition. The enzyme activity was significantly enhanced by the addition of reducing agents, especially $\beta$-mercaptoethanol, which indicates that a $C_{1}$ component has a lot of sulfhydryl groups essential for the enzyme activity. The effect of metal ions on $C_{1}$ activity was also investigated. The $C_{1}$ fraction was found to be thermally stable compare to endo-$\beta$-1,4-glucanase. Optimal temperature and pH were found to be 60.deg.C and 6.0, respectively.

Optimization of Fungal Enzyme Production by Trichoderma harzianum KUC1716 through Surfactant-Induced Morphological Changes

  • Lee, Hanbyul;Lee, Young Min;Heo, Young Mok;Hong, Joo-Hyun;Jang, Seokyoon;Ahn, Byoung Jun;Lee, Sung-Suk;Kim, Jae-Jin
    • Mycobiology
    • /
    • v.45 no.1
    • /
    • pp.48-51
    • /
    • 2017
  • The morphological optimization of Trichoderma harzianum was carried out using several surfactants to achieve increased cellulase production. Addition of the surfactants to the culture medium successfully modified the fungal morphology from an aggregated form to a dispersed form. Optimization of the fungal morphology increased cellulase activity up to 177%. The morphologically optimized conditions enhanced the accessibility of the fungus to substrates and thus promoted cellulase production.

Purification and Characterization of Carboxymethyl Cellulase from Stropharia rugosoannulata (독청버섯아재비 균주가 생산하는 Carboxymethyl Cellulase의 정제 및 효소학적 특성)

  • Yoo, Kwan-Hee;Chang, Hyung-Soo
    • The Korean Journal of Mycology
    • /
    • v.30 no.2
    • /
    • pp.113-118
    • /
    • 2002
  • A Carboxymethyl Cellulase (CMCase) has been isolated and purified from the edible mushroom, Stropharia rugosoannulata. The molecular weight of CMCase was estimated to be 54 kDa by SDS polyacryl amide gel electrophoresis. The maximum activity of the purified CMCase was observed at pH 4.0 and $40^{\circ}C$, and stable for pH 3.0 to 11.0 to maintain 40% activity. The CMCase activity was activated by $AgNO_{3},\;MgSO_{4},\;and\;KCl$. However, its activity was inhibited by 1,10-phenanthroline, KCN and L-cysteine. Also, the enzyme activity was decreased by the addition of EDTA, suggesting that the purified CMCase is metalloenzyme.