• Title/Summary/Keyword: Cellular wireless networks

Search Result 207, Processing Time 0.023 seconds

Optimal User Density and Power Allocation for Device-to-Device Communication Underlaying Cellular Networks

  • Yang, Yang;Liu, Ziyang;Min, Boao;Peng, Tao;Wang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.483-503
    • /
    • 2015
  • This paper analyzes the optimal user density and power allocation for Device-to-Device (D2D) communication underlaying cellular networks on multiple bands with the target of maximizing the D2D transmission capacity. The entire network is modeled by Poisson point process (PPP) which based on stochastic geometry. Then in order to ensure the outage probabilities of both cellular and D2D communication, a sum capacity optimization problem for D2D system on multiple bands is proposed. Using convex optimization, the optimal D2D density is obtained in closed-form when the D2D transmission power is determined. Next the optimal D2D transmission power is obtained in closed-form when the D2D density is fixed. Based on the former two conclusions, an iterative algorithm for the optimal D2D density and power allocation on multiple bands is proposed. Finally, the simulation results not only demonstrate the D2D performance, density and power on each band are constrained by cellular communication as well as the interference of the entire system, but also verifies the superiority of the proposed algorithm over sorting-based and removal algorithms.

Ad-Hoc Behavior in Opportunistic Radio

  • Mumtaz, Shahid;Marques, Paulo;Gameiro, Atilio;Rodriguez, Jonathan
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.187-195
    • /
    • 2009
  • The application of mathematical analysis to the study of wireless ad hoc networks has met with limited success due to the complexity of mobility, traffic models and the dynamic topology. A scenario based universal mobile telecommunications system (UMTS) time division duplex (TDD) opportunistic cellular system with an ad hoc behaviour that operates over UMTS frequency division duplex (FDD) licensed cellular network is considered. In this paper, we present a new routing metric which overall improves system performance in terms of interference and routing which operate in an ad hoc network in an opportunistic manner. Therefore we develop a simulation tool that addresses the goal of analysis and assessment of UMTS TDD opportunistic radio system with ad hoc behavior in coexistence with a UMTS FDD primary cellular networks.

An Enhanced Indirect Handoff for Cellular IP Network (Cellular IP 네트워크에서 인다이렉트 핸드오프 성능 개선)

  • Jung Won-soo;Yun Chan-young;Oh Young-hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1B
    • /
    • pp.1-8
    • /
    • 2006
  • Currently, there are many efforts underway to provide Internet service on integrated wireless and wired networks. Supporting IP mobility is one of the major issues to construct IP based wireless network. Mobile IP has been proposed to solve the IP Mobility problem. But, in processing frequent handoffs in cellular based wireless access network, Micro mobility protocols have been proposed to solve these problems. Micro mobility protocols proposed the Cellular IP, HAWII, and Hierarchical Mobile IP. Cellular IP attracts special attention for it's seamless mobility support in limited geographical areas. New BS must be known to occur begging of handoff in Cellular IP indirect handoff. Therefore during perceiving of hanoff, packet loss or packet duplication still can occur in Cellular IP indirect handoff, which results in the degradation of UDP and TCP performance. In this paper, we propose a enhanced indirect handoff scheme for Cellular IP. Proposed handoff scheme is using a crossover node to minimize the signalling procedure and using a buffering to minimize the packet loss or packet duplication.

Social-Aware Resource Allocation Based on Cluster Formation and Matching Theory in D2D Underlaying Cellular Networks

  • Zhuang, Wenqin;Chen, Mingkai;Wei, Xin;Li, Haibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.1984-2002
    • /
    • 2020
  • With the appearance of wireless spectrum crisis in traditional cellular network, device-to-device (D2D) communication has been regarded as a promising solution to ease heavy traffic burden by enabling precise content delivery among mobile users. However, due to the channel sharing, the interference between D2D and cellular users can affect the transmission rate and narrow the throughput in the network. In this paper, we firstly present a weighted interference minimization cluster formation model involving both social attribute and physical closeness. The weighted-interference, which is evaluated under the susceptible-infected(SI) model, is utilized to gather user in social and physical proximity. Then, we address the cluster formation problem via spectrum clustering with iterative operation. Finally, we propose the stable matching theory algorithm in order to maximize rate oriented to accomplish the one-to-one resource allocation. Numerical results show that our proposed scheme acquires quite well clustering effect and increases the accumulative transmission rate compared with the other two advanced schemes.

Optimal TCP Segment Size for Mobile Contents Server Access over Wireless Links of Cellular Networks (이동통신망에서의 모바일 컨텐츠 서버 통신을 위한 최적의 TCP 세그먼트 길이)

  • Lee, Goo-Yeon;Jeong, Choong-Kyo;Kim, Hwa-Jong;Lee, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.31-41
    • /
    • 2006
  • Internet access from mobile phones over cellular networks suffer from severe bandwidth limitations and high bit error rates over wireless access links. Tailoring TCP connections to best fit the characteristics of this bottleneck link is thus very important for overall performance improvement. In this work, we propose a simple algorithm in deciding the optimal TCP segment size to maximize the utilization of the bottleneck wireless TCP connection for mobile contents server access, taking the dynamic TCP window variation into account. The proposed algorithm can be used when the product of the access rate and the propagation time is not large. With some numerical examples, it is shown that the optimal TCP segment size becomes a constant value when the TCP window size exceeds a threshold. One can set the maximum segment size of a wireless TCP connection to this optimal segment size for mobile contents server access for maximum efficiency on the expensive wireless link.

Joint Optimization Algorithm Based on DCA for Three-tier Caching in Heterogeneous Cellular Networks

  • Zhang, Jun;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2650-2667
    • /
    • 2021
  • In this paper, we derive the expression of the cache hitting probability with random caching policy and propose the joint optimization algorithm based on difference of convex algorithm (DCA) in the three-tier caching heterogeneous cellular network assisted by macro base stations, helpers and users. Under the constraint of the caching capacity of caching devices, we establish the optimization problem to maximize the cache hitting probability of the network. In order to solve this problem, a convex function is introduced to convert the nonconvex problem to a difference of convex (DC) problem and then we utilize DCA to obtain the optimal caching probability of macro base stations, helpers and users for each content respectively. Simulation results show that when the density of caching devices is relatively low, popular contents should be cached to achieve a good performance. However, when the density of caching devices is relatively high, each content ought to be cached evenly. The algorithm proposed in this paper can achieve the higher cache hitting probability with the same density.

Development of Millimeter-Wave Communication Modem for Mobile Wireless Backhaul in Mobile Hotspot Network

  • Choi, Seung Nam;Kim, Junhyeong;Kim, Il Gyu;Kim, Dae Jin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.212-220
    • /
    • 2014
  • The current cellular communications are optimized for low mobility users, meaning that their performance is degraded at high speed. Therefore, passengers in a high-speed train experience very poor radio link quality due to the significantly large number of simultaneous handovers. In addition, wireless data traffic is expanding exponentially in trains, subways and buses due to the widespread use of smartphones and mobile devices. To solve the inherent problem of cellular communication networks and meet the growing traffic demand, this paper proposes the mobile hotspot network of a millimeter-wave communication system as a mobile wireless backhaul. This paper describes the physical layer design of uplink and downlink in the proposed system, and the performances of uplink and downlink are evaluated under Rician fading channel conditions. The implemented baseband prototype of the proposed millimeter-wave communication modem is presented. This system can provide a Gbps data rate service in high-speed trains carrying hundreds of wireless Internet users.

Energy Efficiency Analysis of Cellular Downlink Transmission with Network Coding over Rayleigh Fading Channels

  • Zhu, Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.3
    • /
    • pp.446-458
    • /
    • 2013
  • Recently, energy-efficient cellular transmission has received considerable research attention to improve the energy efficiency of wireless communication. In this paper, we consider a cellular network consisting of one base station (BS) and multiple user terminals and explore the network coding for enhancing the energy efficiency of cellular downlink transmission from BS to users. We propose the network coded cellular transmission scheme and conduct its energy consumption analysis with target outage probability and data rate requirements in Rayleigh fading environments. Then, the energy efficiency in Bits-per-Joule is further defined and analyzed to evaluate the number of bits delivered per Joule of energy cost. Numerical results show that the network coded cellular transmission significantly outperforms the traditional cellular transmission in terms of energy efficiency, implying that given a Joule of energy cost, the network coded cellular transmission scheme can deliver more bits than the traditional cellular transmission.

Cloud Radio Access Network: Virtualizing Wireless Access for Dense Heterogeneous Systems

  • Simeone, Osvaldo;Maeder, Andreas;Peng, Mugen;Sahin, Onur;Yu, Wei
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.135-149
    • /
    • 2016
  • Cloud radio access network (C-RAN) refers to the virtualization of base station functionalities by means of cloud computing. This results in a novel cellular architecture in which low-cost wireless access points, known as radio units or remote radio heads, are centrally managed by a reconfigurable centralized "cloud", or central, unit. C-RAN allows operators to reduce the capital and operating expenses needed to deploy and maintain dense heterogeneous networks. This critical advantage, along with spectral efficiency, statistical multiplexing and load balancing gains, make C-RAN well positioned to be one of the key technologies in the development of 5G systems. In this paper, a succinct overview is presented regarding the state of the art on the research on C-RAN with emphasis on fronthaul compression, baseband processing, medium access control, resource allocation, system-level considerations and standardization efforts.

QoS Aware Energy Allocation Policy for Renewable Energy Powered Cellular Networks

  • Li, Qiao;Wei, Yifei;Song, Mei;Yu, F. Richard
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4848-4863
    • /
    • 2016
  • The explosive wireless data service requirement accompanied with carbon dioxide emission and consumption of traditional energy has put pressure on both industria and academia. Wireless networks powered with the uneven and intermittent generated renewable energy have been widely researched and lead to a new research paradigm called green communication. In this paper, we comprehensively consider the total generated renewable energy, QoS requirement and channel quality, then propose a utility based renewable energy allocation policy. The utility here means the satisfaction degree of users with a certain amount allocated renewable energy. The energy allocation problem is formulated as a constraint optimization problem and a heuristic algorithm with low complexity is derived to solve the raised problem. Numerical results show that the renewable energy allocation policy is applicable not only to soft QoS, but also to hard QoS and best effort QoS. When the renewable energy is very scarce, only users with good channel quality can achieve allocated energy.