• 제목/요약/키워드: Cellular toxicity

검색결과 381건 처리시간 0.04초

INS-1 췌장 베타 세포에서 ferulic acid의 당독성 개선 효과 (Ferulic Acid Protects INS-1 Pancreatic β Cells Against High Glucose-Induced Apoptosi)

  • 박재은;한지숙
    • 생명과학회지
    • /
    • 제34권1호
    • /
    • pp.9-17
    • /
    • 2024
  • 제 2형 당뇨병에서 나타나는 인슐린 분비 감소는 베타세포의 자가사멸에 의한 베타세포질량의 급격한 감소로 인한 것으로 보고되고 있으며, 베타세포의 자가사멸을 촉진하는 요인으로 고혈당에 의한 당독성 및 활성산소종들의 증강에 의한 산화스트레스 등이다. Ferulic acid는 항산화, 항염, 항암 등 다양한 생리활성을 나타내며, 본 연구에서는 고혈당으로 유도된 세포 당독성 개선 효과와 그 기전을 INS-1 췌장 베타세포에서 규명하고자 하였다. Ferulic acid는 고농도 포도당 처리된 INS-1 췌장 베타 세포에서 세포 생존율을 증가시키고, 지질과산화물, 세포 내 ROS 및 NO 수준을 감소시켰다. 세포사멸 관련 인자의 유전자 발현결과 pro-세포자가사멸 인자인 bax, cytochrome c, caspase-3 및 caspase-9의 단백질 발현을 유의적으로 감소시켰고, anti-세포자가사멸 인자인 bcl-2 발현을 증가시켰다. Ferulic acid는 annexin V/I propidium iodide 분석을 통하여 고농도 포도당으로 유도된 세포 사멸을 감소시키고, INS-1 췌장 베타세포에서의 인슐린 분비능을 증가시키는 것으로 사료된다. 따라서ferulic acid는 고농도 포도당으로 손상된 INS-1 췌장 베타세포의 보호효과를 나타낸다.

Enhancement of radiation effect using beta-lapachone and underlying mechanism

  • Ahn, Ki Jung;Lee, Hyung Sik;Bai, Se Kyung;Song, Chang Won
    • Radiation Oncology Journal
    • /
    • 제31권2호
    • /
    • pp.57-65
    • /
    • 2013
  • Beta-lapachone (${\beta}$-Lap; 3,4-dihydro-2, 2-dimethyl-2H-naphthol[1, 2-b]pyran-5,6-dione) is a novel anti-cancer drug under phase I/II clinical trials. ${\beta}$-Lap has been demonstrated to cause apoptotic and necrotic death in a variety of human cancer cells in vitro and in vivo. The mechanisms underlying the ${\beta}$-Lap toxicity against cancer cells has been controversial. The most recent view is that ${\beta}$-Lap, which is a quinone compound, undergoes two-electron reduction to hydroquinone form utilizing NAD(P)H or NADH as electron source. This two-electron reduction of ${\beta}$-Lap is mediated by NAD(P)H:quinone oxidoreductase (NQO1), which is known to mediate the reduction of many quinone compounds. The hydroquinone forms of ${\beta}$-Lap then spontaneously oxidizes back to the original oxidized ${\beta}$-Lap, creating futile cycling between the oxidized and reduced forms of ${\beta}$-Lap. It is proposed that the futile recycling between oxidized and reduced forms of ${\beta}$-Lap leads to two distinct cell death pathways. First one is that the two-electron reduced ${\beta}$-Lap is converted first to one-electron reduced ${\beta}$-Lap, i.e., semiquinone ${\beta}$-Lap $(SQ)^{{\cdot}-}$ causing production of reactive oxygen species (ROS), which then causes apoptotic cell death. The second mechanism is that severe depletion of NAD(P)H and NADH as a result of futile cycling between the quinone and hydroquinone forms of ${\beta}$-Lap causes severe disturbance in cellular metabolism leading to apoptosis and necrosis. The relative importance of the aforementioned two mechanisms, i.e., generation of ROS or depletion of NAD(P)H/NADH, may vary depending on cell type and environment. Importantly, the NQO1 level in cancer cells has been found to be higher than that in normal cells indicating that ${\beta}$-Lap may be preferentially toxic to cancer cells relative to non-cancer cells. The cellular level of NQO1 has been found to be significantly increased by divergent physical and chemical stresses including ionizing radiation. Recent reports clearly demonstrated that ${\beta}$-Lap and ionizing radiation kill cancer cells in a synergistic manner. Indications are that irradiation of cancer cells causes long-lasting elevation of NQO1, thereby sensitizing the cells to ${\beta}$-Lap. In addition, ${\beta}$-Lap has been shown to inhibit the repair of sublethal radiation damage. Treating experimental tumors growing in the legs of mice with irradiation and intraperitoneal injection of ${\beta}$-Lap suppressed the growth of the tumors in a manner more than additive. Collectively, ${\beta}$-Lap is a potentially useful anti-cancer drug, particularly in combination with radiotherapy.

B16F10 melanoma 세포에서 미성숙 사과 과피 열수추출물의 tyrosinase 활성과 melanin 생 성에 미치는 영향 (Effect of Unripe Apple Peel Water Extracts on Tyrosinase Activity and Melanin Production in B16F10 Melanoma Cells)

  • 장영아;이진태
    • 생명과학회지
    • /
    • 제28권8호
    • /
    • pp.900-907
    • /
    • 2018
  • 본 연구는 화장품 소재로서 미성숙 사과 과피 열수추출물의 가능성을 확인하기 위한 것으로 시료의 항산화, 미백 효과에 대한 생물학적 활성 평가를 수행하였다. 시료의 항산화 평가는 1,1-diphenyl-2-picrylhydrazyl(DPPH) 라디칼 소거능과 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) 양이온 라디칼 소거능으로 확인하였다. 시료의 미백 효과를 평가하기 위해서 멜라노마(B16F10 cell)를 이용해 MTT assay를 통한 샘플의 독성평가, cellular tyrosinase 저해율 측정, 멜라닌 생합성량 측정 및 미백관련 단백질 및 유전자의 발현량을 확인하였다. 그 결과 미숙사과 열수추출물의 $1,000{\mu}g/ml$ 농도에서 DPPH 라디칼 소거능 활성이 77.3%, $ABTS^+$ 라디칼 소거능 활성은 동일농도에서 93.1%로 높은 저해능을 나타내었다. 미백활성 평가결과 미성숙 사과 과피 열수추출물의 농도 $50{\mu}g/ml$에서 tyrosinase 활성 억제 19.8%, 멜라닌 생합성 억제율은 17.3%로 나타냈다. ${\alpha}$-MSH로 유도된 B16F10 세포 내에서 tyrosinase, TRP-1, TRP-2의 단백질 발현은 감소되었고 전사인자 MITF의 활성이 저해되었다. Real- time PCR 실험 결과에서 상위신호단계에 있는 관련 유전자의 발현도 미숙사과 미성숙 사과 과피 열수추출물의 농도가 높아짐에 따라 발현이 낮아지는 것을 확인하였다. 상기 실험 결과로부터 미성숙 사과 과피 열수추출물의 우수한 미백 효능을 확인하였으며 향후 안전한 천연 화장품 원료로 사용될 수 있음을 확인하였다.

Imipramine enhances neuroprotective effect of PEP-1-Catalase against ischemic neuronal damage

  • Kim, Dae-Won;Kim, Duk-Soo;Kim, Mi-Jin;Kwon, Soon-Won;Ahn, Eun-Hee;Jeong, Hoon-Jae;Sohn, Eun-Jeong;Dutta, Suman;Lim, Soon-Sung;Cho, Sung-Woo;Lee, Kil-Soo;Park, Jin-Seu;Eum, Won-Sik;Hwang, Hyun-Sook;Choi, Soo-Young
    • BMB Reports
    • /
    • 제44권10호
    • /
    • pp.647-652
    • /
    • 2011
  • The protein transduction domains have been reported to have potential to deliver the exogenous molecules, including proteins, to living cells. However, poor transduction of proteins limits therapeutic application. In this study, we examined whether imipramine could stimulate the transduction efficiency of PEP-1 fused proteins into astrocytes. PEP-1-catalase (PEP-1-CAT) was transduced into astrocytes in a time- and dose-dependent manner, reducing cellular toxicity induced by $H_2O_2$. Additionally, the group of PEP-1-CAT + imipramine showed enhancement of transduction efficiency and therefore increased cellular viability than that of PEP-1-CAT alone. In the gerbil ischemia models, PEP-1-CAT displayed significant neuroprotection in the CA1 region of the hippocampus. Interestingly, PEP-1-CAT + imipramine prevented neuronal cell death and lipid peroxidation more markedly than PEP-1-CAT alone. Therefore, our results suggest that imipramine can be used as a drug to enhance the transduction of PEP-1 fusion proteins to cells or animals and their efficacies against various disorders.

In Vitro 자계(磁界) 측정에 의한 비소화합물의 폐포 Macrophage 독성 평가 (In Vitro Magnetometric Evaluation far Toxicity to Alverolar Macrophage of Arsenic Compounds)

  • 조영채
    • Journal of Preventive Medicine and Public Health
    • /
    • 제32권4호
    • /
    • pp.467-472
    • /
    • 1999
  • 본 연구는 반도체 산업에서 반도체소자로서 주목받고 있는 GaAs, InP및 InAs의 세포독성을 평가하기 위해 햄스터의 폐포 대식세포를 사용하여 in vitro 자계 측정, LDH 활성치측정 및 세포의 형태학적 관찰 등을 검토하였다. 세포자계측정 결과 GaAs, InP 및 InAs첨가군 모두 대조군(PBS첨가군)에 비해 완화곡선이 유의하게 지연되었으며, 특히 GaAs 첨가군은 농도증가에 따라 용량의존적으로 완화곡선이 지연되는 경향이었다. 자화 후 2분간의 완화계수는 대조군에 비해 GaAs 첨가군은 농도증가에 따라 유의하게 낮아지는 용량의존성이 높은 경향이었으나, InP 및 InAs 첨가군에서는 모두 유의성이 인정되지 않았다. LDH활성치는 GaAs, InP 및 InAs첨가군 모두 용량 의존적으로 점차 높아지는 경향이었다. 세포의 형태학적 관찰소견은 GaAs첨가군에서는 용량의존적으로 세포막의 현저한 파괴, 핵의 형태적 변화 등 심한 세포장해가 유발된 반면, InP첨가군과 InAs첨가군에서는 세포내의 구조는 유지되었으나 세포질의 변성이 관찰되었다. 결과적으로 GaAs는 InP나 InAs보다 폐포 대식세포의 세포독성이 강한 것으로 보인다.

  • PDF

($A{\beta}-oligomer$로 유도된 Neuro2A 세포주에서 용담사간탕(龍膽瀉肝湯)의 치매 억제 효과 (A Study on the Inhibitory Effect of Yeongdamsagantang on Alzheimer in $A{\beta}-oligomer-induced$ Neuro 2A Cell Lines)

  • 김해수;신유정;박종혁;김승모;백경민;박치상
    • 대한한의학회지
    • /
    • 제29권2호
    • /
    • pp.151-164
    • /
    • 2008
  • Objective: To investigate the effects of Yeongdamsagantang (YDGT) on apoptosis of neuronal cells that can result in dementia. Method: The water extract of the YDGT was tested in vitro for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with $A{\beta}$ oligomer-related dementias. $A{\beta}$ oligomers derived from proteolytic processing of the ${\beta}-amyloid$ precursor protein (APP), including the $amyloid-{\beta}$ peptide $(A{\beta})$, play a critical role in the pathogenesis of Alzheimer's disease. A neuroblastoma cell line stably expressing an $A{\beta}$ oligomerassociated neuronal degeneration was used to investigate if YDGT inhibits formation of $A{\beta}$ oligomer. To measure the ATP generating level in mitochondrial membrane, luciferin/luciferase luminescence kit (Promega) and luminator was used, and to survey the protein's apparition, confocal microscopy was used. Result: $A{\beta}oligomer$ had a profound attenuation in the increase in CT105 expressing neuro2A cells from YDGT. Experimental evidence indicates that YDGT protected against neuronal damage from cells, but its cellular and molecular mechanisms remain unknown. We demonstrated that YDGT inhibited formation of $amyloid-{\beta}$ $(A{\beta})$ oligomers, which were the behavior, and possibly causative, features of AD. The decreased $A{\beta}$ oligomer in the presence of YDGT was observed in the conditioned medium of this $A{\beta}oligomer-secreting$ cell line under in vitro. In the cells, YDGT significantly attenuated mitochondrion-initiated apoptosis. Conclusion: (i) a direct $A{\beta}$ oligomer toxicity and the apoptosis initiated by the mitochondria; and (ii) multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer aggregation, underlie the neuroprotective effects of YDGT.

  • PDF

LMK02의 품질규격화와 $A{\beta}$ 올리고머에 의해 유도된 희주해마 H19-7세포주에 미치는 항치매효과 (Standardization of Quality and Inhibitory Effect of Alzheimer in $A{\beta}$ Oligomer-induced H19-7 Cells by LMK02)

  • 강형원;김상태;손형진;한평림;조형권;이영재;류영수
    • 동의생리병리학회지
    • /
    • 제23권2호
    • /
    • pp.397-404
    • /
    • 2009
  • For standardization of LMK02 quality, Ginsenoside Rg3 of Red Ginseng and Decursin of Angelica gigas Nakai in the constituents of LMK02 were estimated as indicative components. From LMK02 water extract, has been used in vitro test for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with APP-related dementias and Alzheimer's disease (AD). $A{\beta}$ oligomer derived from proteolytic processing of the ${\beta}$-amyloid precursor protein (APP), including the amyloid-${\beta}$ peptide ($A{\beta}$), play a critical role in the pathogenesis of Alzheimer's dementia. We determined that oligomer amyloid-${\beta}$ ($A{\beta}$) have a profound attenuation in the increase in rat hippocampus H19-7 cells from. Experimental evidence indicates that LMK02 protects against neuronal damage from cells, but its cellular and molecular mechanisms remain unknown. Using a hippocampus cell line on $A{\beta}$ oligomer-induced neuronal cytotoxicity, we demonstrated that LMK02 inhibits formation of $A{\beta}$ oligomer, which are the behavior, and possibly causative, feature of AD. In the Red Ginseng, the average amounts of Ginsenoside Rg3 were $47.04{\mu}g/g$ and $42.3{\mu}g/g$, 90 % of its weight were set as a standard value. And, in the Angelica gigas Nakai, the average amounts of Decursin were 2.71 mg/g and 2.44mg/g, 90 % of its weight were also set as a standard value. The attenuated $A{\beta}$ oligomer in the presence of LMK02 was observed in the conditioned medium of this $A{\beta}$ oligomer-induced cells under in vitro. In the cells, LMK02 significantly activated antiapoptosis and decreased the production of ROS. These results suggest that neuronal damage in AD might be due to two factors: a direct $A{\beta}$ oligomer toxicity and multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer, underlie the neuroprotective effects of LMK02 treatment.

Protective effects of PEP-1-Catalase on stress-induced cellular toxicity and MPTP-induced Parkinson's disease

  • Eom, Seon Ae;Kim, Dae Won;Shin, Min Jea;Ahn, Eun Hee;Chung, Seok Young;Sohn, Eun Jeong;Jo, Hyo Sang;Jeon, Su-Jeong;Kim, Duk-Soo;Kwon, Hyeok Yil;Cho, Sung-Woo;Han, Kyu Hyung;Park, Jinseu;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • 제48권7호
    • /
    • pp.395-400
    • /
    • 2015
  • Parkinson's disease (PD) is a neurodegenerative disability caused by a decrease of dopaminergic neurons in the substantia nigra (SN). Although the etiology of PD is not clear, oxidative stress is believed to lead to PD. Catalase is antioxidant enzyme which plays an active role in cells as a reactive oxygen species (ROS) scavenger. Thus, we investigated whether PEP-1-Catalase protects against 1-methyl-4-phenylpyridinium (MPP+) induced SH-SY5Y neuronal cell death and in a 1-methyl-4-phenyl-1,2,3,6-trtrahydropyridine (MPTP) induced PD animal model. PEP-1-Catalase transduced into SH-SY5Y cells significantly protecting them against MPP+-induced death by decreasing ROS and regulating cellular survival signals including Akt, Bax, Bcl-2, and p38. Immunohistochemical analysis showed that transduced PEP-1-Catalase markedly protected against neuronal cell death in the SN in the PD animal model. Our results indicate that PEP-1-Catalase may have potential as a therapeutic agent for PD and other oxidative stress related diseases. [BMB Reports 2015; 48(7): 395-400]

황기 지상부 다당체의 면역 및 백신보조 효과 (Adjuvant Effect of Polysaccharides from Aboveground Parts of Astragalus membranaceus)

  • 양수진;이시영;이한나;박영철;최선강;유창연;정일민;임정대
    • 한국약용작물학회지
    • /
    • 제24권5호
    • /
    • pp.408-419
    • /
    • 2016
  • Background: In recent years, adjuvants have received increasing attention owing to the development of purified subunit and synthetic vaccines which are poor immunogens and require additional adjuvants to evoke an immune response. Therefore, immunologic adjuvants have been developed and tested. Plant polysaccharides have been recognized as effective biological response modifiers with low toxicity. Methods and Results: In this study, the polysaccharide from the aboveground part of Astragalus membranaceus Bunge containing immunomodulating arabino-3,6-galactan was evaluated for its hemolytic activity and adjuvant potential in the specific cellular and humoral immune responses to ovalbumin. The polysaccharide from the aboveground part of Astragalus membranaceus Bunge was co-immunized with the purified Vi capsular polysaccharide of Salmonella typhi vaccine in mice. The polysaccharide from the aboveground part of Astragalus membranaceus Bunge did not induce any hemolytic activity or side effects at doses up to $500{\mu}g/m{\ell}$. The concanavalin A-, lipopolysaccharide-, and ovalbumin-induced splenocyte proliferation and serum ovalbumin-specific IgG, IgG1 and IgG2b antibody titers in immunized mice were significantly enhanced by AMA. Pharmacological data revealed that the polysaccharide from the aboveground part of Astragalus membranaceus Bunge increased antigen-specific antibody levels in immunized mice. The polysaccharide from the aboveground part of Astragalus membranaceus Bunge-adjuvanted purified Vi capsular polysaccharide of Salmonella typhi vaccine improved the proliferation of splenocytes and macrophages as well as stimulated cytokine production. Conclusions: These results suggest that the polysaccharide from the aboveground part of Astragalus membranaceus Bunge-adjuvanted vaccines enhanced humoral and cellular immunity and that the polysaccharide from the aboveground part of Astragalus membranaceus Bunge is a safe and efficacious adjuvant candidate suitable for use in prophylactic and therapeutic vaccines.

Effect of acidic solutions on the microhardness of dentin and set OrthoMTA and their cytotoxicity on murine macrophage

  • Oh, Soram;Perinpanayagam, Hiran;Lee, Yoon;Kum, Jae-Won;Yoo, Yeon-Jee;Lim, Sang-Min;Chang, Seok Woo;Shon, Won-Jun;Lee, Woocheol;Baek, Seung-Ho;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • 제41권1호
    • /
    • pp.12-21
    • /
    • 2016
  • Objectives: To evaluate the effects of three acids on the microhardness of set mineral trioxide aggregate (MTA) and root dentin, and cytotoxicity on murine macrophage. Materials and Methods: OrthoMTA (BioMTA) was mixed and packed into the human root dentin blocks of 1.5 mm diameter and 5 mm height. Four groups, each of ten roots, were exposed to 10% citric acid (CA), 5% glycolic acid (GA), 17% ethylenediaminetetraacetic acid (EDTA), and saline for five minutes after setting of the OrthoMTA. Vickers surface microhardness of set MTA and dentin was measured before and after exposure to solutions, and compared between groups using one-way ANOVA with Tukey test. The microhardness value of each group was analyzed using student t test. Acid-treated OrthoMTA and dentin was examined by scanning electron microscope (SEM). Cell viability of tested solutions was assessed using WST-8 assay and murine macrophage. Results: Three test solutions reduced microhardness of dentin. 17% EDTA demonstrated severe dentinal erosion, significantly reduced the dentinal microhardness compared to 10% CA (p = 0.034) or 5% GA (p = 0.006). 10% CA or 5% GA significantly reduced the surface microhardness of set MTA compared to 17% EDTA and saline (p < 0.001). Acid-treated OrthoMTA demonstrated microporous structure with destruction of globular crystal. EDTA exhibited significantly more cellular toxicity than the other acidic solutions at diluted concentrations (0.2, 0.5, 1.0%). Conclusions: Tested acidic solutions reduced microhardness of root dentin. Five minute's application of 10% CA and 5% GA significantly reduced the microhardness of set OrthoMTA with lower cellular cytotoxicity compared to 17% EDTA.