• Title/Summary/Keyword: Cellular neural network

Search Result 83, Processing Time 0.023 seconds

A Study on the Application of Fuzzy Neural Network for Troubleshooting of Injection Molding Problems (사출성형 문제해결을 위한 퍼지 신경망 적용에 관한 연구)

  • 강성남;허용정;조현찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.83-88
    • /
    • 2002
  • In order to predict the moldability of a injection molded part, a simulation of filling is needed. Short shot is one of the most frequent troubles encountered during injection molding process. The adjustment of process conditions is the most economic way to troubleshoot the problematic short shot in cost and time since the mold doesn't need to be modified at all. But it is difficult to adjust the process conditions appropriately in no times since it requires an empirical knowledge of injection molding. In this paper, the intelligent CAE system synergistically combines fuzzy-neural network (FNN) for heuristic knowledge with CAE programs for analytical knowledge. To evaluate the intelligent algorithms, a cellular phone flip has been chosen as a finite element model and filling analyses have been performed with a commercial CAE software. As the results, the intelligent CAE system drastically reduces the troubleshooting time of short shot in comparison with the experts' conventional methodology which is similar to the golden section search algorithm.

Recycling Cell Formation using Group Technology for Disposal Products (그룹 데크놀로지 기법을 이용한 폐제품의 리싸이클링 셀 형성)

  • 서광규;김형준
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.05a
    • /
    • pp.111-123
    • /
    • 2000
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences. Recycling cells are formed considering design, process and usage attributes. In this paper, a novel approach to the design of cellular recycling system is proposed, which deals with the recycling cell formation and assignment of identical products concurrently. Fuzzy clustering algorithm and Fuzzy-ART neural network are applied to describe the states of disposal product with the membership functions and to make recycling cell formation. This approach leads to recycling and reuse of the materials, components, and subassemblies and can evaluate the value at each cell of disposal products. Application examples are illustrated by disposal refrigerators, compared fuzzy clustering with Fuzzy-ART neural network performance in cell formation.

  • PDF

Behavior Control of Autonomous Mobile Robots using ECANS1 (진화하는 셀룰라 오토마타를 이용한 자율이동로봇군의 행동제어)

  • Lee, Dong-Wook;Chung, Young-June;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2183-2185
    • /
    • 1998
  • In this paper, we propose a method of designing neural networks using biological inspired developmental and evolutionary concept. The living things are best information processing system in themselves. One individual is developed from a generative cell. And a species of this individual have adapted itself to the environment by evolution. Ontogeny of organism is embodied in cellular automata and phylogeny of species is realized by evolutionary algorithms. The connection among cells is determined by a rule of cellular automata. In order to obtain the best neural networks in the environment, we evolve the arrangement of initial cells. The cell, that is neuron of neural networks, is modeled on chaotic neuron with firing or rest state like biological neuron. A final output of network is measured by frequency of firing state. The effectiveness of the proposed scheme is verified by applying it to navigation problem of robot.

  • PDF

Potential Anomaly Separation and Archeological Site Localization Using Genetically Trained Multi-level Cellular Neural Networks

  • Bilgili, Erdem;Goknar, I. Cem;Albora, Ali Muhittin;Ucan, Osman Nuri
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.294-303
    • /
    • 2005
  • In this paper, a supervised algorithm for the evaluation of geophysical sites using a multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to real data. ML-CNN is a stochastic image processing technique based on template optimization using neighborhood relationships of the pixels. The separation/enhancement and border detection performance of the proposed method is evaluated by various interesting real applications. A genetic algorithm is used in the optimization of CNN templates. The first application is concerned with the separation of potential field data of the Dumluca chromite region, which is one of the rich reserves of Turkey; in this context, the classical approach to the gravity anomaly separation method is one of the main problems in geophysics. The other application is the border detection of archeological ruins of the Hittite Empire in Turkey. The Hittite civilization sites located at the Sivas-Altinyayla region of Turkey are among the most important archeological sites in history, one reason among others being that written documentation was first produced by this civilization.

  • PDF

Channel Allocation Using Mobile Mobility and Neural Net Spectrum Hole Prediction in Cellular-Based Wireless Cognitive Radio Networks (셀룰러 기반 무선 인지망에서 모바일 이동성과 신경망 스펙트럼 홀 예측에 의한 채널할당)

  • Lee, Jin-yi
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.347-352
    • /
    • 2017
  • In this paper, we propose a method that reduces mobile user's handover call dropping probability by using cognitive radio technology(CR) in cellular - based wireless cognitive radio networks. The proposed method predicts a cell to visit by Ziv-Lempel algorithm, and then supports mobile user with prediction of spectrum holes based on CR technology when allocated channels are short in the cell. We make neural network predict spectrum hole resources, and make handover calls use the resources before initial calls. Simulation results show CR technology has the capability to reduce mobile user handover call dropping probability in cellular mobile communication networks.

Fast Pattern Classification with the Multi-layer Cellular Nonlinear Networks (CNN) (다층 셀룰라 비선형 회로망(CNN)을 이용한 고속 패턴 분류)

  • 오태완;이혜정;손홍락;김형석
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.9
    • /
    • pp.540-546
    • /
    • 2003
  • A fast pattern classification algorithm with Cellular Nonlinear Network-based dynamic programming is proposed. The Cellular Nonlinear Networks is an analog parallel processing architecture and the dynamic programing is an efficient computation algorithm for optimization problem. Combining merits of these two technologies, fast pattern classification with optimization is formed. On such CNN-based dynamic programming, if exemplars and test patterns are presented as the goals and the start positions, respectively, the optimal paths from test patterns to their closest exemplars are found. Such paths are utilized as aggregating keys for the classification. The algorithm is similar to the conventional neural network-based method in the use of the exemplar patterns but quite different in the use of the most likely path finding of the dynamic programming. The pattern classification is performed well regardless of degree of the nonlinearity in class borders.

A Study on Automatic Design of Artificial Meural Networks using Cellular Automata Techniques (샐룰라 오토마타 기법을 이용한 신경망의 자동설계에 관한 연구)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.88-95
    • /
    • 1998
  • This paper is the result of constructing information processing system such as living creatures' brain based on artificial life techniques. The living things are best information processing system in themselves. One individual is developed from a generative cell. And a species of this individual has adapted itself to the environment through evolution. In this paper, we propose a new method of designing neural networks using biological inspired developmental and evolutionary concept. Ontogeny of organism is embodied in cellular automata(CA) and phylogeny of species is realized by evolutionary algorithms(EAs). We call 'Evolving Cellular Automata Neural Systems' as ECANSI. The connection among cells is determined by the rule of cellular automata. In order to obtain the best neural networks in given environment, we evolve the arragemetn of initial cells. The cell, that is a neuron of neural networks, is modeled on chaotic neuron with firing or rest state like biological neuron. A final output of network is measured by frequency of firing state. The effectiveness of the proposed scheme is verified by applying it to Exclusive-OR and parity problem.

  • PDF

Image Pattern Classification and Recognition by Using the Associative Memory with Cellular Neural Networks (셀룰라 신경회로망의 연상메모리를 이용한 영상 패턴의 분류 및 인식방법)

  • Shin, Yoon-Cheol;Park, Yong-Hun;Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.154-162
    • /
    • 2003
  • In this paper, Associative Memory with Cellular Neural Networks classifies and recognizes image patterns as an operator applied to image process. CNN processes nonlinear data in real-time like neural networks, and made by cell which communicates with each other directly through its neighbor cells as the Cellular Automata does. It is applied to the optimization problem, associative memory, pattern recognition, and computer vision. Image processing with CNN is appropriate to 2-D images, because each cell which corresponds to each pixel in the image is simultaneously processed in parallel. This paper shows the method for designing the structure of associative memory based on CNN and getting output image by choosing the most appropriate weight pattern among the whole learned weight pattern memories. Each template represents weight values between cells and updates them by learning. Hebbian rule is used for learning template weights and LMS algorithm is used for classification.

Machine Cell Formation using A Classification Neural Network

  • Lee, Kyung-Mi;Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.84-89
    • /
    • 2004
  • The machine cell formation problem is the problem to group machines into machine families and parts into part families so as to minimize bottleneck machines, exceptional parts, and inter-cell part movements in cellular manufacturing systems and flexible manufacturing systems. This paper proposes a new machine cell formation method based on the adaptive Hamming net which is a kind of neural network model. To show the applicability of the proposed method, it presents some experiment results and compares the method with other cell formation methods. From the experiments, we observed that the proposed method could produce good cells for the machine cell formation problem.

Fuzzy ART Neural Network-based Approach to Recycling Cell Formation of Disposal Products (Fuzzy ART 신경망 기반 폐제품의 리싸이클링 셀 형성)

  • 서광규
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.2
    • /
    • pp.187-197
    • /
    • 2004
  • The recycling cell formation problem means that disposal products are classified into recycling product families using group technology in their end-of-life phase. Disposal products have the uncertainties of product condition usage influences. Recycling cells are formed considering design, process and usage attributes. In this paper, a new approach for the design of cellular recycling system is proposed, which deals with the recycling cell formation and assignment of identical products concurrently. Fuzzy ART neural networks are applied to describe the condition of disposal product with the membership functions and to make recycling cell formation. The approach leads to cluster materials, components, and subassemblies for reuse or recycling and can evaluate the value at each cell of disposal products. Disposal refrigerators are shown as an example.