• Title/Summary/Keyword: Cellular Metal

Search Result 162, Processing Time 0.031 seconds

A Study on the Effects of Electromagnetic Wave on Human Body - The Variation of Electroencephalogram by Blocking Electromagnetic Wave Materials and Aural Stimuli - (전자파가 인체에 미치는 영향 - 전자파 차폐소재와 청각자극에 나타난 뇌파전위의 변화 -)

  • Lee, Su-Jeong;Lee, Tae-Il
    • Fashion & Textile Research Journal
    • /
    • v.6 no.4
    • /
    • pp.503-510
    • /
    • 2004
  • The study is one of fundamental researches for the development of future smart clothing and textile products with blocking properties from electromagnetic waves by analyzing human physical symptoms in using electromagnetic products in such an environments. Among various textiles in the experiment, nano silver has shown the best blocking performance from electromagnetic waves, which decreases depending on the distance. The power spectrum distribution and the incidence of electroencephalogram between blocking materials and aural stimuli has shown that, ${\beta}$, wave appeared to be active in all channels except for $T_4$, whereas all waves appeared with processed materials and especially with nano silver silk(NSS), ${\alpha}$, ${\beta}$, ${\theta}$, ${\gamma}$ waves appeared active in all regions. As for the brain mapping of ${\alpha}$ wave according to time, there found a strong activity in $P_3$, $P_4$ of the parietal lobe, with all materials on all time regions. With silk nylon metal(SNM) and NSS, it appeared strong in $F_3$, $F_4$ as well. As for ${\beta}$, wave, the activity appeared strong in frontal lobe before 7min. 30sec, where it tends to diminish abruptly in 7min. 30sec. to 13min. 30sec. region. After 13min., it regained gradually. With NSS, it appeared strong in all areas except for the farthest $T_4$. The appearance of ${\nu}$ wave can be deduced as it can affect human body with its toxic property while the silver particles become nano-sized. Therefore, the study conducted with human participants requires a proper particle size of it which would not penetrate cellular tissues and a proper binder and binding treatment for it, to prevent the physical fatigues and the potential diseases. However, it is highly required for back-up researches to verify various aspects in applying nano silver to textile products.

Suppression of the TRIF-dependent Signaling Pathway of Toll-like Receptor by Cadmium in RAW264.7 Macrophages

  • Park, Se-Jeong;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.187-192
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens. The stimulation of TLRs by microbial components triggers the activation of the myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-$\beta$ (TRIF)-dependent downstream signaling pathways. TLR/MyD88 signaling pathway induces the activation of nuclear factor-kappa B (NF-${\kappa}B$) and the expression of inflammatory cytokine genes, including tumor necrosis factor-alpha, interleukin (IL)-6, IL-12, and IL-$1{\beta}$. On the other hand, TLR/TRIF signaling pathway induces the delayed-activation of NF-${\kappa}B$ and interferon regulatory factor 3 (IRF3), and the expression of type I interferons (IFNs) and IFN-inducible genes. The divalent heavy metal cadmium (Cd) is clearly toxic to most mammalian organ systems, especially the immune system. Yet, the underlying toxic mechanism(s) remain unclear. Cd inhibits the MyD88-dependent pathway by ceasing the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether Cd inhibits the TRIF-dependent pathway. Presently, Cd inhibited NF-${\kappa}B$ and IRF3 activation induced by lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid. Cd inhibited LPS-induced IRF3 phosphorylation and IFN-inducible genes such as interferon inducible protein-10 and regulated on activation normal T-cell expressed and secreted (RANTES). These results suggest that Cd can modulate TRIF-dependent signaling pathways of TLRs.

A BIOLOGICAL EVALUATION OF HIGH COPPER AMALGAM AND GLASS IONOMER-SILVER CEMENT (고동아말감과 Glass ionomer-silver cement의 생물학적 평가에 관한 연구)

  • Oh, Boeng-Won;Choi, Ho-Young;Min, Byung-Soon;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.2
    • /
    • pp.1-16
    • /
    • 1990
  • This study was to evaluate the cytotoxic effect in vitro and the tissue response within the rat peritoneal cavity to high copper amalgam and glass ionomer-silver cement, suggested for use as a retrograde endodontic filling material. In the cytotoxicity experiment, the radioactively ($^{51}Cr$) labeled L929 mouse fibroblasts were employed to determine the relative cytotoxicity of two experimental materials. Those materials were evaluated immediately after set and after one and seven days setting. In the tissue response experiment, two experimental materials were to evaluate mean peritoneal cellular count, differential cell count and the content of silver and copper in pooled packed cells and eluate samples taken by peritoneal lavage technique, and compared with surgical control after one day. two, four and six weeks of implantation. The results were as following: 1. High copper amalgam exhibited significant cytotoxicity immediately after set but showed no sign of toxicity after one day and seven days setting materials. 2. Glass ionomer-silver cement showed no sign of toxicity immediately after set and after one day and seven days setting. 3. High copper amalgam and glass ionomer-silver cement groups produce no significant difference in the mean peritoneal cell count when compared with the surgical control group after one day, two and four weeks of implantation. Surgical control group exhibited significantly a greater cell count when compared with the High copper amalgam group after six weeks. 4. High copper amalgam group increased significantly in the percentage macrophages after four and six weeks of implantation when compared with surgical control group. 5. The trace metal analysis involved an increased silver content in the elutes and an increased copper content in the packed cells of high copper amalgam group, and an increased silver content in the packed cells and elutes of glass ionomer-silver cement group.

  • PDF

The Efficiency of Zinc-Aspartate Complex on Zinc Uptake in Plasma and Different Organs in Normal SD Rats

  • Kim, Yu-Ri;Kim, Ki-Nam;Shim, Boo-Im;Lee, Seung-Min;Kim, In-Kyoung;Sohn, Sung-Hwa;Park, Myung-Gyu;Park, Hong-Suk;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.132-136
    • /
    • 2007
  • Zinc is essential metal and plays a role in a wide variety of physiological and biochemical processes. Prostate gland contains high level of zinc, generally 3-10 folds higher than other organs. Prostatic zinc uptake is resulted from the existence of zinc transporter (ZnT) protein families in membrane. In this study, we investigated the difference of zinc uptake efficiency of zinc-aspartate complex (Zn-Asp) into various organs compared with $ZnSO_4$. We observed that Plasma zinc concentration in both $ZnSO_4$ and Zn-Asp administrated group was increased progressively following administration, and reached a peak level at 2 hr. The increasing pattern of zinc concentration was similar to each groups, however the zinc concentration of Zn-Asp administrated group was higher than that of $ZnSO_4$ administrated group. We found that prostatic zinc level of Zn-Asp administrated group was higher than $ZnSO_4$ administrated group, and was increased approximately $\sim$2.7 fold and $\sim$4.2 fold at 4 and 8 hr after administration. From these observations, we suggest than Zn-Asp has high uptake efficiency of zinc into the prostate gland. Therefore, Zn-Asp is potentially useful treatment of many prostatic diseases.

IDENTIFICATION OF GENES EXPRESSED IN LOW-DOSE-RATE γ-IRRADIATED MOUSE WHOLE BRAIN

  • Bong, Jin Jong;Kang, Yu Mi;Choi, Seung Jin;Kim, Dong-Kwon;Lee, Kyung Mi;Kim, Hee Sun
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.166-171
    • /
    • 2013
  • While high-dose ionizing radiation results in long term cellular cytotoxicity, chronic low-dose (<0.2 Gy) of X- or ${\gamma}$-ray irradiation can be beneficial to living organisms by inducing radiation hormesis, stimulating immune function, and adaptive responses. During chronic low-dose-rate radiation (LDR) exposure, whole body of mice is exposed to radiation, however, it remains unclear if LDR causes changes in gene expression of the whole brain. Therefore, we aim to investigate expressed genes (EGs) and signaling pathways specifically regulated by LDR-irradiation ($^{137}Cs$, a cumulative dose of 1.7 Gy for total 100 days) in the whole brain. Using microarray analysis of whole brain RNA extracts harvested from ICR and AKR/J mice after LDR-irradiation, we discovered that two mice strains displayed distinct gene regulation patterns upon LDR-irradiation. In ICR mice, genes involved in ion transport, transition metal ion transport, and developmental cell growth were turned on while, in AKR/J mice, genes involved in sensory perception, cognition, olfactory transduction, G-protein coupled receptor pathways, inflammatory response, proteolysis, and base excision repair were found to be affected by LDR. We validated LDR-sensitive EGs by qPCR and confirmed specific upregulation of S100a7a, Olfr624, and Gm4868 genes in AKR/J mice whole brain. Therefore, our data provide the first report of genetic changes regulated by LDR in the mouse whole brain, which may affect several aspects of brain function.

Effects of Cadmium on Glucose Transport in 3T3- L1 adipocytes (3T3-L1 지방세포주에서 포도당 수송에 미치는 $CdCl_2$의 영향)

  • Kang Donghee;Khil Lee-Yong;park Kwangsik;Lee Byung-Hoon;Moon Chang- Kiu
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.1
    • /
    • pp.87-95
    • /
    • 2005
  • Cadmium is well known as a toxic metal and has insulin mimicking effects in rat adipose tissue. This study was undertaken to investigate the effect of CdCl₂ on glucose transport and its mechanism in 3T3 - L1 adipocytes. CdCl₂ exhibits respectively 2.2 and 2.8 fold increases in the 2-deoxyglucose uptake when exposed to 10 and 25 μM of CdCl₂ for 12 hr. To investigate the stimulating mechanism of glucose transport induced by CdCl₂. Wortmannin and PD98059 were used respectively as PI3K inhibitor and MAPK inhibitor, which did not affect 2-DOG uptake. This results suggest that induced 2-deoxy-(l-3H)-D-glucose (2-DOG) uptake by CdCl₂ may not be concerned with the insulin signalling pathway. Whereas nifedipine, a calcium channel blocker inhibited the 2- DOG uptake stimulated by CdCl₂. In addition, we also measured the increased production of Reactive oxygen substances (ROS) and glutathione (GSH) level in 3T3-L1 adipocytes to investigate correlation between the glucose uptake and increased production of ROS with H2DCFDA. CdCl₂ increased production of ROS. Induced 2-DOG uptake and increased production of ROS by CdCl₂ were decreased by N-acetylcystein (NAC). And L-buthionine sulfoximine (BSO) a potent inhibitor of γ-GCS, decreased of 2-DOG uptake. Also NAC and BSO changed the cellular GSH level, but GSH/GSSG ratio remained unchanged at 10, 25 μM of CdCl₂.

High Temperature Properties of Vanadium and Molybdenum Added High Silicon Ductile Iron (바나듐과 몰리브덴이 첨가된 고규소 구상흑연주철의 고온특성)

  • Park, Heung-Il;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.27 no.5
    • /
    • pp.203-208
    • /
    • 2007
  • The high temperature properties of vanadium and molybdenum added high silicon ductile iron, so called V-Mo-Si ductile iron, were investigated. The (V,Mo) complex carbides and Mo carbides precipitated at the cellular boundaries of the as-cast specimens. The microhardness of the (V,Mo) carbides were in the range of 553-619, while that of the Mo carbides in the range of 341-390. The thermo-mechanical tests were carried out with a Gleeble system at 700 and $800^{\circ}C$ under vacuum condition. The tensile strengths of the specimen tested at $700^{\circ}C$ with the dynamic deformation rate of 50 mm/sec and those with the static deformation rate of 0.15 mm/sec were 235.7 and 115.3 MPa, while the reduction in area were 23.7 and 22.4%, respectively. At the high dynamic deformation rates, the tensile strength was steeply increased due to promoting the brittle fracture of pearlite in the matrix of the specimens. But the changes of the reduction in area with the deformation rates on the same specimens were negligible. The weight gain of the V-Mo-Si specimens oxidized in the air atmosphere for 6 hours at 800 and $900^{\circ}C$ were 1.1 and 4.1.%, respectively. The cross-sectional microstructure of oxidized specimens consisted of the porous external scale layer grown outside from the original surface, the dense internal scale layer grown into the original surface, the decarburized ferrite layer between the internal scale and the matrix of base metal. The (V,Mo) carbides and Mo carbides formed in the matrix of as-cast specimen did not decompose during oxidation at 900 for 24 hours in air atmosphere.

Properties of Protease from Aeromonas hydrophila AM-28 Isolated from Soil (토양에서 분리된 Aeromonas hydrophila AM-28이 생산하는 단백질 가수분해효소의 특성)

  • Kim, In-Sook;Kim, Hyung-Kwoun;Lee, Jung-Kee;Bae, Kyung-Sook;Oh, Tae-Kwang
    • Korean Journal of Microbiology
    • /
    • v.32 no.4
    • /
    • pp.291-296
    • /
    • 1994
  • A bacterial strain NO. AM-28, showing proteolytic activity against defatted soybean was isolated from domestic soil. The isolated strain was identified as Aeromonas hydrophila by both the biochemical tests using API kit and the analysis of cellular fatty acid profile with MIDI system. The protease production from A. hydrophila AM-28 was highly enhanced when it was cultivated in the medium containing glycerol as a carbon source, tryptone or $(NH_4)_2HPO_4$ as a nitrogen source, and $CaCl_2$ as a mineral source. The optimal pH and temperature for the enzyme was 8.0 and $65^{\circ}C$, respectively. The enzyme was stable up to $55^{\circ}C$ and at pH values ranging from 7.0 to 13.0. The enzyme activity was inhibited by phenylmethylsulfonyl fluoride and EDTA, indicating that serine residue and metal ions be involved in enzyme activity.

  • PDF

Hepatic Gene Expression Analysis of Gadolinium Chloride Treated Mice

  • Jeong, Sun-Young;Lim, Jung-Sun;Hwang, Ji-Yoon;Kim, Yong-Bum;Kim, Chul-Tae;Lee, Nam-Seob;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Gadolinium chloride ($GdCl_{3}$) was known to block Kupffer cells and generally its toxicity study based on blocking these cells. Therefore, $GdCl_{3}$ frequently used to study toxic mechanisms of hepatotoxicants inducing injury through Kupffer cells. We also tried to investigate the effect of $GdCl_{3}\;on\;CCl_{4}$ toxicity, typical hepatotoxicants. Administration of $GdCl_{3}$ to mice significantly suppressed AST (asparatate amino transferase), ALT (alanine amino transferase) levels which were increased by $CCl_{4}$ treatment. However, $GdCl_{3}$ didn't inhibit the phagocytotic activity of Kupffer cells. Malondialdehyde (MDA) is a good indicator of the degree of lipid peroxidation. In this study, MDA increased by $GdCl_{3}$ administration not by $CCl_{4}$. To understand the toxicity of $GdCl_{3}$, we analyzed global gene expression profile of mice liver after acute $GdCl_{3}$ injection. Four hundred fifty two genes were differentially expressed with more than 2-fold in at least one time point among 3 hr, 6 hr, and 24 hr. Several genes involved in fibrogenesis regulation. Several types of pro-collagens (Col1a2, Col5a2, Col6a3, and Col13a1) and tissue inhibitor of metal-loproteinase1 (TIMP1) were up regulated during all the time points. Genes related to growth factors, chemokines, and oxidative stress, which were known to control fibrogenesis, were significantly changed. In addition, $GdCl_{3}$ induced abnormal regulation between lipid synthesis and degradation related genes. These data will provide the information about influence of $GdCl_{3}$ to hepatotoxicity.

Enhancing effect of Panax ginseng on Zip4-mediated zinc influx into the cytosol

  • Ikeda, Yoshito;Munekane, Masayuki;Yamada, Yasuyuki;Kawakami, Mizuki;Amano, Ikuko;Sano, Kohei;Mukai, Takahiro;Kambe, Taiho;Shitan, Nobukazu
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.248-254
    • /
    • 2022
  • Background: Zinc homeostasis is essential for human health and is regulated by several zinc transporters including ZIP and ZnT. ZIP4 is expressed in the small intestine and is important for zinc absorption from the diet. We investigated in the present study the effects of Panax ginseng (P. ginseng) extract on modulating Zip4 expression and cellular zinc levels in mouse Hepa cells. Methods: Hepa cells were transfected with a luciferase reporter plasmid that contains metal-responsive elements, incubated with P. ginseng extract, and luciferase activity was measured. Using 65ZnCl2, zinc uptake in P. ginseng-treated cells was measured. The expression of Zip4 mRNA and protein in Hepa cells was also investigated. Finally, using a luciferase reporter assay system, the effects of several ginsenosides were monitored. Results: The luciferase activity in cells incubated with P. ginseng extract was significantly higher than that of control cells cultured in normal medium. Hepa cells treated with P. ginseng extract exhibited higher zinc uptake. P. ginseng extract induced Zip4 mRNA expression, which resulted in an enhancement of Zip4 protein expression. Furthermore, some ginsenosides, such as ginsenoside Rc and Re, enhanced luciferase activity driven by intracellular zinc levels. Conclusion: P. ginseng extract induced Zip4 expression at the mRNA and protein level and resulted in higher zinc uptake in Hepa cells. Some ginsenosides facilitated zinc influx. On the basis of these results, we suggest a novel effect of P. ginseng on Zip4-mediated zinc influx, which may provide a new strategy for preventing zinc deficiency.