• Title/Summary/Keyword: Cellular Localization

Search Result 249, Processing Time 0.026 seconds

Facilitation of SUMO (Small Ubiquitin-like Modifier) Modification at Tau 340-Lys Residue (a Microtubule-associated Protein) through Phosphorylation at 214-Ser Residue

  • Lee, Eun-Jeoung;Hyun, Sung-Hee;Chun, Jae-Sun;Ahn, Hye-Rim;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • v.11 no.1
    • /
    • pp.39-50
    • /
    • 2007
  • Tau plays a role in numerous neuronal processes, such as vesicle transport, microtubule-plasma membrane interaction and intracellular localization of proteins. SUMO (Small Ubiquitin-like Modifier) modification (SUMOylation) appears to regulate diverse cellular processes including nuclear transport, signal transduction, apoptosis, autophagy, cell cycle control, ubiquitin-dependent degradation, as well as gene transcription. We noticed that putative SUMOylation site is localized at $^{340}K$ of $Tau(^{339}VKSE^{342})$ with the consensus sequence information (${\Phi}KxE$ ; where ${\Phi}$ represents L, I, V or F and x is any amino acid). In this report, we demonstrated that $^{340}K$ of Tau is the SUMOylation site and that a point mutant of Tau S214E (an analog of the phospho $^{214}S$ Tau) promotes its SUMOylation at $^{340}K$ and its nuclear or nuclear vicinity localization, by co-immunoprecipitation and confocal microscopy analysis. Further, we demonstrate that the Tau S214E (neither Tau S214A nor Tau K340R) mutant increases its protein stability. However, the SUMOylation at $^{340}K$ of Tau did not influence cell survival, as determined by FACS analysis. Therefore, our results suggested that the phosphorylation of Tau on $^{214}S$ residue promotes its SUMOylation on $^{340}K$ residue and nuclear vicinity localization, and increases its stability, without influencing cell survival.

GTP Binding Is Required for SEPT12 to Form Filaments and to Interact with SEPT11

  • Ding, Xiangming;Yu, Wenbo;Liu, Ming;Shen, ShuQing;Chen, Fang;Cao, Lihuan;Wan, Bo;Yu, Long
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.385-389
    • /
    • 2008
  • Septins are a family of filament-forming GTP-binding proteins involved in a variety of cellular process such as cytokinesis, exocytosis, and membrane dynamics. Here we report the biochemical and immunocytochemical characterization of a recently identified mammalian septin, SEPT12. SEPT12 binds GTP in vitro, and a mutation (Gly56 to Asn) in the GTP-binding motif abolished binding. Immunocytochemical analysis revealed that wild-type SEPT12 formed filamentous structures when transiently expressed in Hela cells whereas $SEPT12^{G56A}$ generated large aggregates. In addition, wild-type SEPT12 failed to form filaments when coexpressed with $SEPT12^{G56A}$. We also observed that GTP-binding by SEPT12 is required for interaction with SEPT11 but not with itself.

CBP-Mediated Acetylation of Importin α Mediates Calcium-Dependent Nucleocytoplasmic Transport of Selective Proteins in Drosophila Neurons

  • Cho, Jae Ho;Jo, Min Gu;Kim, Eun Seon;Lee, Na Yoon;Kim, Soon Ha;Chung, Chang Geon;Park, Jeong Hyang;Lee, Sung Bae
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.855-867
    • /
    • 2022
  • For proper function of proteins, their subcellular localization needs to be monitored and regulated in response to the changes in cellular demands. In this regard, dysregulation in the nucleocytoplasmic transport (NCT) of proteins is closely associated with the pathogenesis of various neurodegenerative diseases. However, it remains unclear whether there exists an intrinsic regulatory pathway(s) that controls NCT of proteins either in a commonly shared manner or in a target-selectively different manner. To dissect between these possibilities, in the current study, we investigated the molecular mechanism regulating NCT of truncated ataxin-3 (ATXN3) proteins of which genetic mutation leads to a type of polyglutamine (polyQ) diseases, in comparison with that of TDP-43. In Drosophila dendritic arborization (da) neurons, we observed dynamic changes in the subcellular localization of truncated ATXN3 proteins between the nucleus and the cytosol during development. Moreover, ectopic neuronal toxicity was induced by truncated ATXN3 proteins upon their nuclear accumulation. Consistent with a previous study showing intracellular calcium-dependent NCT of TDP-43, NCT of ATXN3 was also regulated by intracellular calcium level and involves Importin α3 (Imp α3). Interestingly, NCT of ATXN3, but not TDP-43, was primarily mediated by CBP. We further showed that acetyltransferase activity of CBP is important for NCT of ATXN3, which may acetylate Imp α3 to regulate NCT of ATXN3. These findings demonstrate that CBP-dependent acetylation of Imp α3 is crucial for intracellular calcium-dependent NCT of ATXN3 proteins, different from that of TDP-43, in Drosophila neurons.

Expression, subcellular localization, and antioxidant role of mammalian methionine sulfoxide reductases in Saccharomyces cerevisiae

  • Kwak, Geun-Hee;Kim, Jae-Ryong;Kim, Hwa-Young
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.113-118
    • /
    • 2009
  • Despite the growing body of evidence suggesting a role for MsrA in antioxidant defense, little is currently known regarding the function of MsrB in cellular protection against oxidative stress. In this study, we overexpressed the mammalian MsrB and MsrA genes in Saccharomyces cerevisiae and assessed their subcellular localization and antioxidant functions. We found that the mitochondrial MsrB3 protein (MsrB3B) was localized to the cytosol, but not to the mitochondria, of the yeast cells. The mitochondrial MsrB2 protein was detected in the mitochondria and, to a lesser extent, the cytosol of the yeast cells. In this study, we report the first evidence that MsrB3 overexpression in yeast cells protected them against $H_2O_2$-mediated cell death. Additionally, MsrB2 overexpression also provided yeast cells with resistance to oxidative stress, as did MsrA overexpression. Our results show that mammalian MsrB and MsrA proteins perform crucial functions in protection against oxidative stress in lower eukaryotic yeast cells.

재조합 Saccharomyces cerevisiae에서 Inulinase와 Invertase의 발현과 분비에 미치는 배양조건의 영향

  • 남수완;신동하;김연희
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.3
    • /
    • pp.258-265
    • /
    • 1997
  • The effects of medium pH and culture temperature on the expression and secretion of inulinase and invertase were investigated with recombinant Saccharomyces cerevisiae cells. These cells were obtained by transformation of 2$\mu$-based plasmids pYI10 and pYS10 which contain Kluyveromyces marxianus inulinase gene (INU1A) and S. cerevisiae invertase gene (SUC2), respectively, in the downstream of GAL1 promoter. The expression level and localization of inulinase and invertase were not affected significantly by the initial medium pH: secretion efficiencies of inulinase and invertase into the medium were about 90% and 60%, respectively, in the pH ranges of 4.0 to 6.5. However, the expression and secretion of both enzymes were strongly dependent on the culture temperature. The highest expression (7.7 units/mL) and secretion (6.7 units/mL) of inulinase were observed at 28$\circ$C and 30$\circ$C. As a consequence of decreased localization of inulinase in the periplasmic space, the secretion efficiency increased from 68% at 20$\circ$C, to 95% at 35$\circ$C,. The total expression level and secretion efficiency of invertase increased from 19 units/mL and 55% at 20$\circ$C to 25 units/mL and 68% at 35$\circ$C, respectively. Irrespective of the culture temperature, the invertase activity in the cellular fraction (periplasmic space and cytoplasmic fractions) was kept constant at around 33-45%.

  • PDF

Localization of a KEM1::lacZ Fusion Protein in Yeast Cells (효모세포에서 KEM1::lacZ 융합 단백질의 위치결정)

  • Kim, Jin-Mi;Fink, Gerald R.
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.12-19
    • /
    • 1994
  • KEM1 is known to control the spindle pole body or microtubule function, probably in response to the cellular nutritional conditions in Saccharomyces cerevisiae. Transposon insertions were performed in the cloned KEM1 gene using mini-Tn10-LUK element carrying E. coli ${\beta}$-galactosidase structural gene. A collection of ranfom Tn10-LUK insertions defined an approximately 3.5 kb region required for the KEM1 function. From this collection functional KEM1::lacZ protein fusions were identified. Indirect immunofluorescence using anti-${\beta}$-galacatosidase antibodies localized the KEM1::lacZ fusion protein to the periphery of the nucleus.

  • PDF

HDAC4 Regulates Muscle Fiber Type-Specific Gene Expression Programs

  • Cohen, Todd J.;Choi, Moon-Chang;Kapur, Meghan;Lira, Vitor A.;Yan, Zhen;Yao, Tso-Pang
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.343-348
    • /
    • 2015
  • Fiber type-specific programs controlled by the transcription factor MEF2 dictate muscle functionality. Here, we show that HDAC4, a potent MEF2 inhibitor, is predominantly localized to the nuclei in fast/glycolytic fibers in contrast to the sarcoplasm in slow/oxidative fibers. The cytoplasmic localization is associated with HDAC4 hyper-phosphorylation in slow/oxidative-fibers. Genetic reprogramming of fast/glycolytic fibers to oxidative fibers by active CaMKII or calcineurin leads to increased HDAC4 phosphorylation, HDAC4 nuclear export, and an increase in markers associated with oxidative fibers. Indeed, HDAC4 represses the MEF2-dependent, PGC-$1{\alpha}$-mediated oxidative metabolic gene program. Thus differential phosphorylation and localization of HDAC4 contributes to establishing fiber type-specific transcriptional programs.

Characterization of a novel Cotesia vestalis polydnavirus (CvBV) gene containing a ser-rich motif expressed in Plutella xylostella larvae

  • Shi, Min;Chen, Ya-Feng;Huang, Fang;Zhou, Xue-Ping;Chen, Xue-Xin
    • BMB Reports
    • /
    • v.41 no.8
    • /
    • pp.587-592
    • /
    • 2008
  • Cotesia vestalis is an endoparasitoid of Plutella xylostella larvae and injects a polydnavirus (CvBV) into its host during oviposition. In this report we characterize the gene, CvBV3307, and its products. CvBV3307 is located on segment S33 of the CvBV genome, is 517 bp, and encodes a putative protein of 122 amino acids, including a serine-rich region. The expression pattern of CvBV3307 in parasitized larvae and the subcellular localization of CvBV3307 only in granulocytes indicated that it might be involved in early protection of parasitoid eggs from host cellular encapsulation and in manipulating the hormone titer and developmental rhythm of host larvae. Western blot analysis showed that the size of the immunoreactive protein (about 55 kDa) in parasitized hosts at 48 hours post parasitization (h p.p.) is much larger than the predicted molecular weight of 13.6 kDa, which suggests that CvBV3307 undergoes extensive post-translational modification in hosts.

Mitochondrial Location of Severe Acute Respiratory Syndrome Coronavirus 3b Protein

  • Yuan, Xiaoling;Shan, Yajun;Yao, Zhenyu;Li, Jianyong;Zhao, Zhenhu;Chen, Jiapei;Cong, Yuwen
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.186-191
    • /
    • 2006
  • Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), a distant member of the Group 2 coronaviruses, has recently been identified as the etiological agent of severe acute respiratory syndrome (SARS). The genome of SARS-CoV contains four structural genes that are homologous to genes found in other coronaviruses, as well as six subgroup-specific open reading frames (ORFs). ORF3 encodes a predicted 154-amino-acid protein that lacks similarity to any known protein, and is designated 3b in this article. We reported previously that SARS-CoV 3b is predominantly localized in the nucleolus, and induces G0/G1 arrest and apoptosis in transfected cells. In this study, we show that SARS-CoV 3b fused with EGFP at its N- or C- terminus co-localized with a mitochondriaspecific marker in some transfected cells. Mutation analysis of SARS-CoV 3b revealed that the domain spanning amino acids 80 to 138 was essential for its mitochondria localization. These results provide new directions for studies of the role of SARS-CoV 3b protein in SARS pathogenesis.

Sequence driven features for prediction of subcellular localization of proteins (단백질의 세포내 소 기관별 분포 예측을 위한 서열 기반의 특징 추출 방법)

  • Kim, Jong-Kyoung;Choi, Seung-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.226-228
    • /
    • 2005
  • Predicting the cellular location of an unknown protein gives valuable information for inferring the possible function of the protein. For more accurate Prediction system, we need a good feature extraction method that transforms the raw sequence data into the numerical feature vector, minimizing information loss. In this paper we propose new methods of extracting underlying features only from the sequence data by computing pairwise sequence alignment scores. In addition, we use composition based features to improve prediction accuracy. To construct an SVM ensemble from separately trained SVM classifiers, we propose specificity based weighted majority voting . The overall prediction accuracy evaluated by the 5-fold cross-validation reached $88.53\%$ for the eukaryotic animal data set. By comparing the prediction accuracy of various feature extraction methods, we could get the biological insight on the location of targeting information. Our numerical experiments confirm that our new feature extraction methods are very useful forpredicting subcellular localization of proteins.

  • PDF