• Title/Summary/Keyword: Cellular Attachment

Search Result 108, Processing Time 0.023 seconds

Electron Microscopy of the Intercellular Junction of Frog (Rana temporaria) Skin (개구리 피부의 세포접착부에 관한 전자 현미경적 연구)

  • Yoon, J.S.;Chang, S.H.;Choi, K.D.
    • Applied Microscopy
    • /
    • v.1 no.1
    • /
    • pp.19-26
    • /
    • 1969
  • Electron microscopy on the skin of young frogs, Rana temporaria, has been carried out with particular reference to cellular attachment sites. For the first time now several technical developments allow a more detailed visualization of the fine structure within the cellular attachment sites as well as making it possible to show the ultra-structural morphology of the junctional complexes, and to demonstrate that the desmosomes are regularly distributed aroand each skin cell, especially in the S. granulosum. The relations of these findings to these of previous investigations concerning the functional, organization of the junctional complexes and to the findings in skin cancer from a cellular adhesion view point have been briefly discussed.

  • PDF

Effects of Glycosaminoglycan on the Growth of Human Gingival Fibroblast (Glycosaminoglycan이 치은섬유아세포의 성장에 미치는 영향)

  • Lee, Yong-Bae;Pi, Sung-Hee;Kim, Tak;Lee, Kwang-Soo;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.3
    • /
    • pp.599-610
    • /
    • 2000
  • Gingival fibroblasts are embedded in an extracellular matrix. The matrixs have influence on the development, polarity, and behavior of nearby cells. The major component of periodontal extracellular matrix is a glycosaminoglycan. The glycosaminoglycan are large carbohydrates that are composed of repeating disaccharide units and exist in three main form: dermatan sulfate, chondrotitin sulfate, heparan sulfate. The purpose of present study is to examine the biologic effects of glycosaminoglycan on human gingival fibroblast. Human gingival fibroblasts were supplemented with each glycosaminoglycan, and cellular attachment and proliferation was determined by MTT assay. Dermatan sulfate and chondroitin sulfate did not stimulate the attachment and proliferation of human gingival fibroblasts, but heparan sulfate increased the proliferation and attachment in a time- and dose dependent manner. These results indicated that heparan sulfate seems to have a high potential for gingival regeneration and root surface attachment.

  • PDF

Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration

  • Chung, Joo-Ryun;Choi, Jong-Won;Fiorellini, Joseph P.;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.17 no.3
    • /
    • pp.191-198
    • /
    • 2017
  • Background: For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Method: In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results: The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusion: Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits.

Morphological and Cellular Characteristics of Aerial Roots in the Epiphytic American Ivy (Parthenocissus sp.) (착생식물 기근의 형태 및 세포학적 특성)

  • Yim, Ji-Eun;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.329-337
    • /
    • 2002
  • The morphology and cellular characteristics of adventitious roots, viz aerial roots, in the epiphytic American Ivy were examined to reveal structural changes of the aerial root upon surface attachment. Immature aerial roots were composed of parenchyma cells with dense cytoplasm containing plastids, however, the upper and lower epidermis were not distinguished. At early development, electron-dense substances (EDS) were constituents of much of the aerial root tissue, but the distribution of EDS varied within the tissue. The deposits appeared most concentrated in the superficial cell layers, with lesser amounts in cell layers closer to the cortex. Electron micrographs revealed that EDS deposits were always found in the vacuole, and were mainly associated with the tonoplast. While most of them occurred in the vacuole as small spherical deposits adjacent to the tonoplast, some deposits were oddly shaped or larger in size. Many of the vacuoles eventually filled with EDS, but the EDS content in those vacuoles decreased substantially after initial attachment to the surface. When the vacuoles became almost empty, cells near the epidermis already exhibited irregularity in outline. Subsequent breakdown of cellular components took place in the cells while they were still attached to the surface. This study suggests the potential role of EDS as substances involved in the surface attachment of the plant, however, further studies must be conducted to reveal the nature of EDS and the effects of EDS storage within these vacuoles.

Microbial Subversion of Heparan Sulfate Proteoglycans

  • Chen, Ye;Gotte, Martin;Liu, Jian;Park, Pyong Woo
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.415-426
    • /
    • 2008
  • The interactions between the host and microbial pathogen largely dictate the onset, progression, and outcome of infectious diseases. Pathogens subvert host components to promote their pathogenesis and, among these, cell surface heparan sulfate proteoglycans are exploited by many pathogens for their initial attachment and subsequent cellular entry. The ability to interact with heparan sulfate proteoglycans is widespread among viruses, bacteria, and parasites. Certain pathogens also use heparan sulfate proteoglycans to evade host defense mechanisms. These findings suggest that heparan sulfate proteoglycans are critical in microbial pathogenesis, and that heparan sulfate proteoglycan-pathogen interactions are potential targets for novel prophylactic and therapeutic approaches.

Effects of $TGF-{\beta}1$ on Cellular Activity of Minocycline-Pretreated Human Periodontal Ligament Cells (($TGF-{\beta}$)이 Minocycline을 전처리한 사람 치주인대세포의 활성에 미치는 영향)

  • Yang, Seung-Oh;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.469-490
    • /
    • 1996
  • The initial events required for periodontal regeneration is the attachment, spreading, and proliferation of appropriated cells at the healing sites. These have been reported that minocycline stimulates the attachment of periodontal ligament cells, and also $TGF-{\beta}1$ enhances the proliferation of periodontal ligament cells. The purpose of the present study was to evaluate the effects of $TGF-{\beta}1$ on the cellular activity of minocycline treated human periodontal ligament cells. Periodontal ligament cells were obtained from the explants of healthy periodontal ligaments of extracted 3rd molars or premolar teeth extracted from the patients for orthodontic treatment. The cells were cultured in minimal essential medium(${\alpha}-MEM$) supplemented with 10.000units/ml penicillin, $10,000{\mu}g/ml$ streptomycin and 10% FBS(fetal bovine serum) at $37^{\circ}C$ in a humidified atmosphere of 5% carbon dioxide and the 5th to the 8th passages of the cells were used. To evaluate the effect of minocycline on cell attachment, the cells were seeded at a cell density of $1.5{\times}10^4$ cells/well in 24-well culture plates and treated with $20{\mu}g/ml$ and $100{\mu}g/ml$ of minocycline for 1.5 h. After trypsinization, the cells were counted with hemocytometer and were taken photographs for observation of cellular morphology. To evaluate the effect of $TGF-{\beta}1$ on minocycline-pretreated periodontal ligament cells, the cells were seeded at a cell density of $1{\times}10^4$ cells/ well in 24-well culture plates and treated with $20{\mu}g/ml$ and $100{\mu}g/ml$ of minocycline for 1.5 h. After incubation, 1 and 10ng/ml of $rh-TGF-{\beta}1$ were also added to the each well and incubated for 1 and 2 days, respectively. Then, MTT assay, DNA synthesis($^3H-thymidine\;assay$), and protein and collagen assay(3H-proline assay) were carried out. In the MIT assay, after 200ul MTT solutionlconeentration of 5mg/ml) were added to the each well of the 24-well plates and incubated for 3 hours, and 200 ul DMSO were added so as to dissolve insoluble blue formazan crystals which was formed in incubated period. Then it read plates on a ELISA reader. For mitogenic assay, 1 uCi/ml $^3H-thymidine$ was added to each well for the final 2 hours of the incubation periods. After labeling, the wells were washed 3 times with ice cold PBS and 4 times with 5% TCA to remove unincorporated label and precipitate the cellular DNA. DNA, with the incorporated $^3H-thymidine$, was solubilized with 500 ul of 0.1% NaOH/0.1% SDS. A 250 ul aliquot was removed from each well and placed in a scintillation vial with 4ml of scintillation cocktail. Using an liguid scintillation counter, counts per minute(CPM) were determined for each samples. 3 uCi/ml $^3H-proline$ was added to each well for the final 4 hours of the incubation periods and total protein and percent collagen synthesis were carried out. The results indicate that minocycline treated group with $100{\mu}g/ml$ concentration for 1.5 hours significantly increased than that of control in cell attachment, and cell process is also evident compared with that of control in cell morphology, and the cellular activity and DNA synthesis rate of cells treated minocycline and $TGF-{\beta}1$ significantly increased than that of control values, but were below to values of the $TGF-{\beta}1$ only treated group in MIT assay and $^3H-thymidine\;assay$, and the total protein synthesis of minocycline and $TGF-{\beta}1$ treated group also significantly increased than that of control values, but the percent collagen synthesis of tested group significantly decreased to compared with control. On the above the findings, the tested group of minocycline and $TGF-{\beta}1$ did not increase the effect on the cell activity than $TGF-{\beta}1$ only tested group and the tested group of minocycline inhibited cell activity. This results indicate that minocycline was effective on cell attachment in early stage, but it is harmful to cell activity, that inhibitory effect of minocycline was compensated with stimulatory effect of $TGF-{\beta}1$.

  • PDF

Infectivity of Orientia tsutsugamushi to Various Eukaryotic Cells and Their Cellular Invasion Mechanism (Orientia tsutsugamushi의 유핵세포내 감염능 분석 및 기전)

  • Ihn, Kyung-Soo;Han, Seung-Hoon;Kim, Hang-Rae;Seong, Seung-Yong;Kim, Ik-Sang;Choi, Myung-Sik
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.5
    • /
    • pp.435-443
    • /
    • 1999
  • Orientia tsutsugamushi is obligate intracellular bacterium that grows within the cytoplasm of the eukaryotic host cells. Therefore capability of the attachment, entry into the host cell and intracellular survival should be critical process for oriential infection. In this study we investigated the cellular invasion mechanism of Orientia tsutsugamushi and the role of transmembrane heparan sulfate proteoglycan, which binds diverse components at the cellular microenvironment and is implicated as host cell receptors for a variety of microbial pathogens. First of all Orientia tsutsugamushi can invade a wide range of nonprofessional phagocytic cells including fibroblast, epithelial cells and endothelial cells of various host species, including Band T lymphocytes. Thus, it was postulated that the attachment of O. tsutsugamushi requires the recognition of ubiquitous surface structures of many kinds of host cells. Treatments with heparan sulfate and heparin inhibited the infection of Orientia tsutsugamushi in dose-dependent manner for L cell, mouse fibroblast, whereas other glycosaminoglycans such as chondroitin sulfate had no effect. Collectively, these findings provide strong evidence that initial interaction with heparan sulfate proteoglycan is required for the oriential invasion into host cells.

  • PDF

Comparison of Three Different Culture Systems for Establishment and Long-Term Culture of Embryonic Stem-like Cells from In Vitro-Produced Bovine Embryos

  • Kim, Daehwan;Park, Sangkyu;Roh, Sangho
    • Journal of Embryo Transfer
    • /
    • v.27 no.3
    • /
    • pp.189-192
    • /
    • 2012
  • Although embryonic stem cells (ESCs) or ES-like cells are reported from many mammalian species other than the mouse, the culture system for murine ESCs may not be suitable to the other species. Previously many other research groups have modified either human or mouse ESC culture systems for bovine ESC culture. In this study, we compared three different culture mediums consisting of DMEM, ${\alpha}$-MEM or KnockOut$^{TM}$-DMEM (KO), which are modified from human or mouse ESC culture system, for the generation of bovine ESCs. In this study, some pre-requisite events which are important for establishment and long-term propagation of ESCs such as inner cell mass (ICM) attachment on feeder cells, primary colony formation and sustainability after passaging. Once the ICM clumps attached on feeder cells, this was designated as passage 0. In regards to the rate of ICM attachment, ${\alpha}$-MEM was superior to the other systems. For primary colony formation, there was no difference between DMEM and ${\alpha}$-MEM whereas KO showed lower formation rate than the other groups. For passaging, the colonies were split into 2~4 pieces and passed every 5~6 days. From passage 1 to passage 3, DMEM system seemed to be appropriate for maintaining putative bovine ESCs. On the other hand, ${\alpha}$-MEM tended to be more suitable after passage 6. Although ${\alpha}$-MEM support to maintain a ES-like cell progenies to passage 15, all three culture systems which are modified from human or mouse ESC culture media failed to retain the propagation and long-term culture of putative bovine ESCs. Our findings imply that more optimized alternative culture system is required for establishing bovine ESC lines.

Comparison of surface roughness effects upon the attachment of osteoblastic progenitor MC3T3-E1 cells and inflammatory RAW 264.7 cells to a titanium disc

  • Noh, Se-Ra;Im, Tae-Yoon;Lee, Eun-Young;Jang, Ha-Na;Dung, Tran D.;Kim, Myung-Soo;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • The attachment and adhesion of RAW 264.7 and MC3T3-E1 cells to titanium (Ti) discs with various degrees of roughness was investigated. The attachment, adhesion, and proliferation of these cells were evaluated after 4 hr, 24 hr and 7 day incubations. Both RAW 264.7 and MC3T3-E1 cells showed a time-dependant correlation between attachment and adhesion on the surface of the titanium discs. Both types of cells tended to have higher survival rate on these discs as the surface roughness increased. The percentage of adherent inflammatory RAW 264.7 cells was greater than MC3T3-E1 cells at 24 hr, but this was reversed at 7 days in culture. The morphology of osteoblastic MC3T3-E1 cells at 24 hr, determined using a surface emission microscope (SEM), appeared flattened and spread out while inflammatory RAW 264.7 cells were predominantly spherical in shape. The adhesion of both cell types on the titanium discs was dependant on the levels of fibronectin adsorbed on the disc surface, indicating that serum constituents modulate the efficient adhesion of these cells. Our data indicate that the cellular response to the titanium surface is dependent on the types of cells, surface roughness and serum constituents.

NEUROBIOLOGY OF ATTACHMENT (애착의 신경생물학)

  • Hong, Hyun-Ju;Oh, Tae-Sung;Shin, Yee-Jin
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.15 no.2
    • /
    • pp.115-122
    • /
    • 2004
  • It is difficult to think of any behavioral process that is more intrinsically important to human beings than social attachment. Feeding, sleeping and locomotion are all necessary for survival, but humans are 'a social animal' and it is our social attachment that we live for. One of the early pioneers in this area, Harry Harlow, described the different behavioral processes that are involved in the formation of parent-infant, filial and pair(male-female) bonds. Each of these involves multi-sensory processing and complex motor responses. Over the past decades, studies in a range of vertebrates, including humans, have begun to address the neural basis of attachment at a molecular, cellular and systemic level. This review describes some of important insights from these works, involving three different areas:1) Neurobiological research of infant-parent, parent-infant attachment, 2) Animal studies regarding attachment, 3) Neurobehavioral studies of maltreatment/deprivation causing serious breakdown of attachment relationship in humans.

  • PDF