• 제목/요약/키워드: Cell trapping

검색결과 111건 처리시간 0.026초

The Relationship Between Hydrogen Trapping Behavior and SSCC Suceptibility of API X60/65 Grade Steels

  • Lee, Jae Myung;Kim, Jin Suk;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • 제2권3호
    • /
    • pp.109-116
    • /
    • 2003
  • It is well known that SSCC (sulfide stress corrosion cracking) is caused by drastic ingression of hydrogen during the service and accumulation of hydrogen near the potential crack initiation site in the material. It is important to characterize the hydrogen trapping behavior to evaluate the service performance of the high strength pipeline steels. In this study. the relationship between the hydrogen trapping behavior and SSCC susceptibility is evaluated in terms of alloy composition, microstructure and carbide behavior. The hydrogen trapping behavior was measured by electrochemical hydrogen permeation test cell (Devanathan cell). The SSCC susceptibility is evaluated by constant extension rate test and constant strain lest method. The hydrogen trapping behavior is affected greatly by microstructure and nature of carbide particles. The fine TiC, and NbC in the matrix of ferritic structure acts as strong irreversible trap sites whereas the bainitic structure acts as reversible trap site. The SSCC susceptibility is closely related to not only the hydrogen trapping behavior but also the loading condition. As the activity of reversible trap site increases, SSCC susceptibility decreases under static loading condition below yield strength, whereas SSCC susceptibility increases under dynamic loading condition or above yield strength. As the activity of irreversible trap site increases. SSCC susceptibility increases regardless of loading condition. It is cased by the mixed effect of dislocation on hydrogen diffusion and trapping behavior.

Effect On Glass Texturing For Enhancement of Light Trapping in Perovskite Solar Cells

  • Kim, Dong In;Nam, Sang-Hun;Hwang, Ki-Hwan;Lee, Yong-Min;Boo, Jin-Hyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.387.2-387.2
    • /
    • 2016
  • Glass texturing is a sufficient method for changing the surface morphology to enhance the light trapping. In this study, glass texturing was applied to the perovskite solar cell for improving the current density. Glass substrates (back-side glass of FTO coated glass substrate) were textured by randomly structure assisted wet etching process using diluted HF solution at a constant concentration of etchants (HF:H2O=1:1). Then, the light trapping properties of suitable films were controlled over a wide range by varying the etching time (1, 2, 3, 4 and 5 min.). The surface texturing changed the reflected light in an angle that it can be reflected by substrate glass surface. As a result, Current density and cell efficiency were affected by light trapping layer using glass texturing method in perovskite solar cells.

  • PDF

Ultrashort Pulsed Laser Machining for Biomolecule Trapping

  • Choi, Hae-Woon;Farson, Dave F.;Lee, L.James;Lee, Ho
    • Journal of the Optical Society of Korea
    • /
    • 제13권3호
    • /
    • pp.335-340
    • /
    • 2009
  • Ultrashort pulse laser drilling of polycarbonate track-etched membrane (pTEM) material was used to fabricate a mouse embryo cell trapping device. Holes with a diameter of $2{\mu}m$ to $5{\mu}m$ were fabricated on a $10{\mu}m$ thick membrane using a femtosecond laser with a 150 fs pulse width and 775 nm wavelength and multiple-pulse irradiation. In cell trapping tests, the overall cell occupancy of the machined holes in the fabricated pTEM was found to be more than 80%. The results of a single pulse and multiple pulse irradiation were compared in terms of the surface quality. It was generally found that a single pulse with high energy was less desirable than irradiation with multiple pulses of lower energy.

Light Trapping in Silicon Based Tandem Solar Cell: A Brief Review

  • Iftiquar, Sk Md;Park, Hyeongsik;Dao, Vinh Ai;Pham, Duy Phong;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제4권1호
    • /
    • pp.1-7
    • /
    • 2016
  • Among the various types of solar cells, silicon based two terminal tandem solar cell is one of the most popular one. It is designed to split the absorption of incident AM1.5 solar radiation among two of its component cells, thereby widening the wavelength range of external quantum efficiency (EQE) spectra of the device, in comparison to that of a single junction solar cell. In order to improve the EQE spectra further and raise short circuit current density ($J_{sc}$) an optimization of the tradeoff between the top and bottom cell is needed. In an optimized cell structure, the $J_{sc}$ and hence efficiency of the device can further be enhanced with the help of light trapping scheme. This can be achieved by texturing front and back surface as well as a back reflector of the device. In this brief review we highlight the development of light trapping in the silicon based tandem solar cell.

Present Status of Thin Film Solar Cells Using Textured Surfaces: A Brief Review

  • Park, Hyeongsik;Iftiquar, S.M.;Le, Anh Huy Tuan;Ahn, Shihyun;Kang, Junyoung;Kim, Yongjun;Yi, Junsin;Kim, Sunbo;Shin, Myunghun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권5호
    • /
    • pp.275-279
    • /
    • 2016
  • This is a brief review on light trapping in Si based thin film solar cells with textured surfaces and transparent conducting oxide front electrodes. The light trapping scheme appears to be essential in improving device efficiency over 10%. As light absorption in a thin film solar cells is not sufficient, light trapping becomes necessary to be effectively implemented with a textured surface. Surface texturing helps in the light trapping, and thereby raises short circuit current density and its efficiency. Such a scheme can be adapted to single junction as well as tandem solar cell, amorphous or micro-crystalline devices. A tandem cell is expected to have superior performance in comparison to a single junction cell and random surface textures appears to be preferable to a periodic structures.

한시적 세포포집 구조물을 이용한 다세포 스페로이드 형성 및 추출칩 (A Multicellular Spheroid Formation and Extraction Chip Using Removable Cell Trapping Barriers)

  • 진혜진;김태윤;조영호;구진모;김진국;오용수
    • 대한기계학회논문집A
    • /
    • 제35권2호
    • /
    • pp.131-134
    • /
    • 2011
  • 본 논문에서는 한시적 세포포집 구조물을 이용한 다세포 스페로이드의 형성 및 추출칩을 제안하였다. 종래의 웰 플레이트와 플라스크는 작은 스페로이드 형성이 어렵고, 기존 마이크로칩은 고정된 세포포집 구조물을 이용하여 스페로이드 추출이 어려운 단점이 있다. 반면, 제안된 칩은 한시적 세포포집 구조물을 이용하여 스페로이드의 형성과 추출이 모두 용이한 장점이 있다. 50kPa 의 박막압력으로 형성된 세포포집 구조물에 145~155Pa 의 세포입력압력으로 유입되는 세포를 포집한 후, 24 시간 배양하여 스페로이드를 형성하였다. 또한, 박막압력 제거 후 5kPa 의 세포입력압력으로 추출된 스페로이드의 지름과 활성도는 각각 $197{\pm}11.7Bm$, $80.3{\pm}7.7%$로 측정되었다. 제안된 칩은 스페로이드의 균일한 형성과 안정적 추출이 용이하여 스페로이드의 후처리에 적용될 수 있다.

AC PDP 셀에서 Resonance Radiation Trapping을 고려한 방전 특성해석 (Effect of Resonance Radiation Trapping on Xe discharge in AC PDP Cell)

  • 김정호;정희섭;이병호;황기웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.990-992
    • /
    • 1998
  • Resonance radiation trapping has a great influence on the characteristics of gas discharge. We calculate the spatial and spectral distribution of photons by Monte Carlo method in AC PDP cell.

  • PDF

Formation of Magnetic Structures for Trapping of Breast Cancer Cell

  • Alaa Alasadi;Ali Ghanim Gatea Al Rubaye
    • 한국재료학회지
    • /
    • 제34권3호
    • /
    • pp.144-151
    • /
    • 2024
  • This work focuses on the fabrication of excellent magnetic structures for trapping breast cancer cells. Micromagnetic structures were patterned for trapping cancer cells by depositing 30 nm of permalloy on a silicon substrate. These structures were designed and fabricated using two fabrication techniques: electron beam lithography and laser direct writing. Two types of magnetic structures, rectangular wire and zig-zagged wire, were created on a silicon substrate. The length of each rectangular wire and each straight line of zig-zagged wire was 150 ㎛ with a range of widths from 1 to 15 ㎛ for rectangular and 1, 5, 10 and 15 ㎛ for zigzag, respectively. The magnetic structures showed good responses to the applied magnetic field despite adding layers of silicon nitride and polyethylene glycol. The results showed that Si + Si3N4 + PEG exhibited the best adhesion of cells to the surface, followed by Si + Py + Si3N4 + PEG. concentration of 5-6 with permalloy indicates that this layer affected silicon nitride in the presence of Polyethylene glycolPEG.

박막태양전지의 광포획 기술 현황 (Current Status in Light Trapping Technique for Thin Film Silicon Solar Cells)

  • 박형식;신명훈;안시현;김선보;봉성재;;;이준신
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.95-102
    • /
    • 2014
  • Light trapping techniques can change the propagation direction of incident light and keep the light longer in the absorption layers of solar cells to enhance the power conversion efficiency. In thin film silicon (Si) solar cells, the thickness of absorption layer is generally not enough to absorb entire available photons because of short carrier life time, and light induced degradation effect, which can be compensated by the light trapping techniques. These techniques have been adopted as textured transparent conduction oxide (TCO) layers randomly or periodically textured, intermediate reflection layers of tandem and triple junction, and glass substrates etched by various patterning methods. We reviewed the light trapping techniques for thin film Si solar cells and mainly focused on the commercially available techniques applicable to textured TCO on patterned glass substrates. We described the characterization methods representing the light trapping effects, texturing of TCO and showed the results of multi-scale textured TCO on etched glass substrates. These methods can be used tandem and triple thin film Si solar cells to enhance photo-current and power conversion efficiency of long term stability.