• Title/Summary/Keyword: Cell space

Search Result 1,250, Processing Time 0.029 seconds

Expression, Purification, and Characterization of Prothrombin Kringle 2

  • Rhim, Tai-Youn;Kim, Eun-kyung;Park, Chan-Soo;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.147-153
    • /
    • 1999
  • Previously, we reported that the prothrombin kringle 2 (fragment 2), induced by LPS administration into rabbit, inhibited bFGF-stimulated BCE cell growth (Lee et al., 1998). In this study, we cloned and overexpressed the kringle 2 domain of rabbit and human prothrombin as a fusion protein with the pelB leader sequence in E. coli using the T7 promoter. The fusion protein was cleaved during translocation into the peri plasmic space, and cleaved recombinant protein was readily isolated from whole cell lysate by DEAE-Sepharose and Sephacryl S-200 gel filtration chromatography. Both the recombinant rabbit and human prothrombin kringle 2 showed very similar biochemical and functional characteristics to the rabbit prothrombin kringle 2 purified from rabbit serum, in terms of abnormal electrophoretic migration and endothelial cell growth inhibitory activity.

  • PDF

The of Rack with Modularized Cell considering Heterogeneous Unit Load Size in AS/RS (자동창고 Effectiveness 시스템에서 크기가 다른 저장단위를 고려한 모듈화 셀을 갖는 랙의 효과)

  • 이문환;이영해
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.1-4
    • /
    • 2000
  • In general, under the concept of unit load, Automated Storage/Retrieval Systems (AS/RS) have the rack of equal sized cells. However, they are inadequate and inefficient meeting the various sizes of customers' demands in today's business environment. Higher utilization and flexibility of warehouse storage can be achieved by using AS/RS with tile rack of modularized cell. In this paper, the model of AS/RS with the rack of modularized cell is proposed, and the effectiveness of proposed model is presented by way of numerical examples. The model developed in this research, as one type of AS/RS that is more flexible to the size and has higher space utilization than those of existing rack structure, could every useful for the storage of heterogeneous unit load sizes.

  • PDF

Efficient Calculation of Distance Fields Using Cell Subdivision (셀 분할을 이용한 거리장의 효율적 계산)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.147-156
    • /
    • 2008
  • A new approach based on cone prism intersection method combined with sorting algorithm is proposed for the fast and robust signed distance field computation. In the method, the space bounding the geometric model composed of triangular net is divided into multiple smaller cells. For the efficient calculation of distance fields, valid points among the triangular net which will generate minimum distances with current cell are selected by checking the intersection between current cell and cone prism generated at each point. The method is simple to implement and able to achieve an order of magnitude improvement in the computation time as compared to earlier approaches. Further the method is robust in handling the traditional sign problems. The validity of the suggested method was demonstrated by providing numerous examples including Boolean operation, shape deformation and morphing of complex geometric models.

Squamous Cell Carcinoma Arising from the Pleural Cavity After Pneumonectomy for Chronic Empyema

  • Jeon, Yeong Jeong;Shin, Sumin;Shim, Young Mog
    • Journal of Chest Surgery
    • /
    • v.50 no.2
    • /
    • pp.123-125
    • /
    • 2017
  • Malignant tumors associated with chronic empyema have been reported in the literature, and a majority of these tumors are lymphomas. Epithelial tumors originating from the post-pneumonectomy space in patients with chronic empyema are extremely rare. Here, we present the cases of 2 patients with squamous cell carcinoma arising from the pleural cavity after pneumonectomy for chronic empyema.

Cytochemistry of cellulase in Capitate Glandular Trichomes of Pelargonium ${\times}$ fragrans (Geraniaceae)

  • Nam, Ko-Kyung;Lee, Kyung-Whan;Lee, Sang-Eun;Kim, Eun-Soo
    • 한국전자현미경학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.75-78
    • /
    • 2007
  • The localization of cellulase were investigated in the capitate glandular trichomes of Pelargonium ${\times}$ fragransby a transmission electron microscopy. The secretory cells of capitate trichomes involved in biosynthesis and its secretion. Secretory material is transported to the space between the plasma membrane and cell wall, and subsequently accumulated in the secretory cavity. The splitting of secretory cell wall during the formation of secretory cavity is suggested that wall-forming enzymes, such as cellulase, may contribute to the wall separation process. Cellulase reaction product was localized in the secretory cell, the secretory cavity and in the subcuticular wall of glandular trichomes. Reaction products were present over fibrillar matrix in the secretory cavity associated with both the inner wall and the subcuticular wall.

  • PDF

Plant Cells on Earth and in Space

  • Braun, Markus;Sievers, Andreas
    • Animal cells and systems
    • /
    • v.4 no.3
    • /
    • pp.201-214
    • /
    • 2000
  • Two quite different types of plant cells are analysed with regard to transduction of the gravity stimulus: (i) Unicellular rhizoids and protonemata of characean green algae; these are tube-like, tip-growing cells which respond to the direction of gravity. (ii) Columella cells located in the center of the root cap of higher plants; these cells (statocytes) perceive gravity. The two cell types contain heavy particles or organelles (sataoliths) which sediment in the field of gravity, thereby inducing the graviresponse. Both cell types were studied under microgravity conditions ($10^{-4}$/ g) in sounding rockets or spacelabs. From video microscopy of living Chara cells and different experiments with both cell types it was concluded that the position of statoliths depends on the balance of two forces, i.e. the gravitational force and the counteracting force mediated by actin microfilaments. The actomyosin system may be the missing link between the gravity-dependent movement of statoliths and the gravity receptor(s); it may also function as an amplifier.

  • PDF

An Efficient Buffer Management in a Multi-Cell Flexible Manufacturing Systems (FMS 환경하의 효율적인 버버관리에 관한 연구)

  • 이정표
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.10a
    • /
    • pp.128-132
    • /
    • 1998
  • This research is concerned with buffer management in a multi-cell FMS(Flexible Manufacturing System) with an AGVS(Automated Guided Vehicle System). To reduce blocking and starving caused by breakdowns, variablility in process times, and diversity of part routing, buffer is needed. Due to the high per unit buffer cost, which primarily consists of floor space and equipment cost, the total capacity of buffers in an FMS is very limited. Therefore, proper buffer management can provide a high system efficiency. This paper presents a buffer management model for a multi-cell FMS with an AGVS and a simulation study to compare the proposed model to a conventional buffer management model in a job shop FMS.

  • PDF

Use of homogenization theory to build a beam element with thermo-mechanical microscale properties

  • Schrefler, B.A.;Lefik, M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.613-630
    • /
    • 1996
  • The homogenization method is used to develop a beam element in space for thermo-mechanical analysis of unidirectional composites. Local stress and temperature field in the microscale are described using the function of homogenization. The global (macroscopic) behaviour of the structure is supposed to be that of a beam. Beam-type kinematical hypotheses (including independent shear rotations) are hence applied and superposed on the microdescription. A macroscopic stiffness matrix for such a beam element is then developed which contains the microscale properties of the single cell of periodicity. The presented model enables us to analyse without too much computational effort complicated composite structures such as e.g. toroidal coils of a fusion reactor. We need only a FE mesh sufficiently fine for a correct description of the local geometry of a single cell and a few of the newly developed elements for the description of the global behaviour. An unsmearing procedure gives the stress and temperature field in the different materials of a single cell.

Stack Performances of Proton Exchange Membrane Fuel Cell

  • Kho, Young-Tai;Cho, Won-Ihl;Park, Yong-Woo-
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.14-16
    • /
    • 1994
  • The development of proton exchange membrane fuel cells(PEMFCs) with high energy efficiencies and high power densities is gaining momentum because their performance characteristics are attractive for terrestrial(power sources for electrical vehicles, stand-by power), space and underwater application[1]. Fuel cells are capable of running on non-petroleum fuels such as methanol, natural gas or hydrogen and also have major impact on improving air quality. They virtually eliminate particulates, NO$_{x}$, SO$_{x}$, and significant reduce hydrocarbons and carbon monoxide. Especially, fuel cell-battery hybrid power sources appear to be well suited to overcome both the so-called battery problem(low energy density) and the fuel cell problem(low power density)[2].[2].

  • PDF

Cell-based Discrete Event and Discrete Time Simulation for the Prediction of Oil Slick Movement and Spreading in Ocean Environment (해상에서의 원유 확산 과정 예측을 위한 격자 기반 이산 사건 및 이산 시간 시뮬레이션)

  • Ha, Sol;Cha, Ju-Hwan;Ku, Nam-Kug;Lee, Kyu-Yeul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • In this paper, oil spreading simulation model is proposed for analyzing the oil spreading phenomenon rapidly when the ocean is polluted by the oil from a stranded ship. The space occupied by the ocean is converted into the latticed cell, and the each cell contains the information, such as the quantity of the oil, the temperature of the ocean, and the direction of current and wind. Two states, such as "clean" and "polluted" are defined in the each cell, and the oil in the cell spreads to the neighbor cells by the spreading rules. There are three spreading rules. First, the oil in the certain cell only spreads to the neighbor cells that contain larger oil than the certain cell. Second, the oil evaporates in proportion to the temperature of the ocean at the every time step. Third, the oil spreading property is affected by the direction and the speed of the current and the wind. The oil spreading simulation model of the each cell is defined by using the combined discrete event and discrete time simulation model architecture with the information and the spreading rules in the cell. The oil spreading simulation is performed when the oil of 10,000 kL is polluted in the ocean environment of 300 m by 300 m with various current and wind.