• Title/Summary/Keyword: Cell size model

Search Result 382, Processing Time 0.025 seconds

Analysis of Three Dimensional Equal Chanel Angular Pressing by Using the Finite Element Method in Conjunction with the Dislocation Cell Based Constitutive Model (전위 셀 구성모델을 결합한 유한요소법을 이용한 3차원 등통로각압출 공정 해석)

  • Yoon, Seung Chae;Kim, Hyoung Seop
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.699-706
    • /
    • 2009
  • Deformation behavior of pure aluminum during equal channel angular pressing (ECAP) was simulated using a three-dimensional version of the finite element method in conjunction with a constitutive model based on the dislocation density and cell evolution. The three-dimensional finite element analyses for the prediction of microstructural features, such as the variation of the dislocation density and the cell size with the number of ECAP, are reported. The calculated stress and strain and their distributions are also investigated for the route Bc ECAP processed pure aluminum. The results of finite element analyses are found to be in good agreement with experimental results for the dislocation cell size. Due to the accumulation of strain throughout the workpiece and an overall trend to saturation in cell size, a decrease of the difference in cell size with the number of passes (1~4) was predicted.

A Sensitivity Analysis of Cell Size on a Distributed Non-Point Source Pollution Model (분산형 비점오염원 모델에서 단위유역 크기의 민감도 분석)

  • Bae, In-Hee;Park, Jung-Eun;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.952-957
    • /
    • 2005
  • A sensitivity analysis study was performed to examine the effects of cell size on a distributed non-point source pollution model. The model, AnnAGNPS, whiff is a modified version of USDA's AGNPS, was applied to Eung stream watershed, a tributary of Cheongmi stream located in the South Branch of Han River System. The model components and results, such as channel length, slope, land use, and delivery ratio, were analyzed according to the various cell sizes from 10 to 200 ha. As cell sire increases, channel length decreases due to short-circuiting of meandering creek. The decreased channel length has more significant effects on the model results than any other geomorphological change. When the effects of land use and soil distribution are excluded, sediment delivery loads increase due to shorter time to reach the outlet of the watershed in larger tell size. When those effects are included, however, sediment delivery loads decrease in larger fell size because the variety of land use types can not be inputted. The predominant land use in the applied watershed is forest with very low soil erosion such that the predicted sediment delivery might be much lower than real system. The cell size of 30 ha was determined to produce the most appropriate resolution. Surface runoff and non-point source loads of TN, TP and BOD were predicted and the results agree well with the field measurements. From this study, it was shown that the model results would be very dependent on variations of topography, land use, and soil distribution, as a function of cell size, and the optimum cell size is very important for successful application of distributed non-point source pollution model.

Rigorous Model for Spherical Cell-support Aggregate

  • Moon, Seung-Hyeon;Lee, Ki-Beom;Satish J. Paruekar
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.42-50
    • /
    • 2001
  • The activity of immobilized cell-support particle aggregates is influenced by physical and biochemical elements, mass transfer, and physiology. Accordingly, the mathematical model discussed in this study is capable of predicting the steady state and transient concentration profiles of the cell mass and substrate, plus the effects of the substrate and product inhibition in an immobilized cell-support aggregate. The overall mathematical model is comprised of material balance equations for the cell mass, major carbon source, dissolved oxygen, and non-biomass products in a bulk suspension along with a single particle model. A smaller bead size and higher substrate concentration at the surface of the particle, resulted in a higher supply of the substrate into the aggregate and consequently a higher biocatalyst activity.

  • PDF

Analysis of Deformation and Microstructural Evolution during ECAP Using a Dislocation Cell Related Microstructure-Based Constitutive Model (전위쎌에 기초한 미세조직 구성모델을 이용한 ECAP 공정 시 변형과 미세조직의 진화 해석)

  • Kim H. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.207-210
    • /
    • 2004
  • The deformation behavior of copper during equal channel angular pressing (ECAP) was calculated using a three-dimensional version of a constitutive model based on the dislocation density evolution. Finite element simulations of the variation of the dislocation density and the dislocation cell size with the number of ECAP passes are reported. The calculated stress, strain and cell size are compared with the experimental data for Cu deformed by ECAP in a modified Route C regime. The results of FEM analysis were found to be in good agreement with the experiments. After a rapid initial decrease down to about 200 nm in the first ECAP pass, the average cell size was found to change little with further passes. Similarly, the strength increased steeply after the first pass, but tended to saturate with further pressings. The FEM simulations also showed strain non-uniformities and the dependence of the resulting strength on the location within the workpiece.

  • PDF

Development and Evaluation of SWAT Topographic Feature Extraction Error(STOPFEE) Fix Module from Low Resolution DEM (저해상도 DEM 사용으로 인한 SWAT 지형 인자 추출 오류 개선 모듈 개발 및 평가)

  • Kim, Jong-gun;Park, Youn-shik;Kim, Nam-won;Chung, Il-moon;Jang, Won-seok;Park, Jun-ho;Moon, Jong-pil;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.488-498
    • /
    • 2008
  • Soil and Water Assessment Tool (SWAT) model have been widely used in simulating hydrology and water quality analysis at watershed scale. The SWAT model extracts topographic feature using the Digital Elevation Model (DEM) for hydrology and pollutant generation and transportation within watershed. Use of various DEM cell size in the SWAT leads to different results in extracting topographic feature for each subwatershed. So, it is recommended that model users use very detailed spatial resolution DEM for accurate hydrology analysis and water quality simulation. However, use of high resolution DEM is sometimes difficult to obtain and not efficient because of computer processing capacity and model execution time. Thus, the SWAT Topographic Feature Extraction Error (STOPFEE) Fix module, which can extract topographic feature of high resolution DEM from low resolution and updates SWAT topographic feature automatically, was developed and evaluated in this study. The analysis of average slope vs. DEM cell size revealed that average slope of watershed increases with decrease in DEM cell size, finer resolution of DEM. This falsification of topographic feature with low resolution DEM affects soil erosion and sediment behaviors in the watershed. The annual average sediment for Soyanggang-dam watershed with DEM cell size of 20 m was compared with DEM cell size of 100 m. There was 83.8% difference in simulated sediment without STOPFEE module and 4.4% difference with STOPFEE module applied although the same model input data were used in SWAT run. For Imha-dam watershed, there was 43.4% differences without STOPFEE module and 0.3% difference with STOPFEE module. Thus, the STOPFEE topographic database for Soyanggang-dam watershed was applied for Chungju-dam watershed because its topographic features are similar to Soyanggang-dam watershed. Without the STOPFEE module, there was 98.7% difference in simulated sediment for Chungju-dam watershed for DEM cell size of both 20 m and 100 m. However there was 20.7% difference in simulated sediment with STOPFEE topographic database for Soyanggang-dam watershed. The application results of STOPFEE for three watersheds showed that the STOPFEE module developed in this study is an effective tool to extract topographic feature of high resolution DEM from low resolution DEM. With the STOPFEE module, low-capacity computer can be also used for accurate hydrology and sediment modeling for bigger size watershed with the SWAT. It is deemed that the STOPFEE module database needs to be extended for various watersheds in Korea for wide application and accurate SWAT runs with lower resolution DEM.

Dimensioning leaky bucket parameters considering the cell delay variation (셀 지연 변이를 고려한 리키 버킷 계수 결정 방법)

  • 이준원;이병기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.31-38
    • /
    • 1995
  • In this paper, we consider the leaky bucket parameter dimensioning problem in the presence of the cell delay variation(CDV) which arises at the customer premises network dud to the multiplexing with other traffic streams. We consider an ATM multiplexer in which a single CBR stream and several heterogeneous VBR traffic streams are multiplexed. Choosing an MMPP model for the bursty traffic streams, we derive an (MMPP+DD)/D/1/K queueing model for the evaluation of the CDV experienced by the CBR stream. We first evaluate the equilibrium queue length distribution embedded at tagged-cell arrival-time instants, based on whcih we calcuate the inter-cell time distribution and the distribution kof the number of tagged-cell departures in an arbitrary interval. Then we apply the analysis to the dimensionging problem of the leaky bucket parameters, examining how the employed traffic model affects the determination of the bucket size. Through numerical examples, we confirm that the Poisson traffic model can underestimate the bucket size, thus causing a considerable blocking probability for compliant use cells while the MMPP model can optimally design the bucket size which keeps the blocking probability under the target value.

  • PDF

Applications of AGNPS model with rural watersheds having complex land use characteristics (복합 토지이용 특성의 농촌유역에 대한 농업비점원오염모형의 적용)

  • 조재필;박승우;강문성
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.353-358
    • /
    • 1998
  • GRASS-AGNPS model integrated with GIS was applied to rural watersheds having complex land use characteristics and evaluated for its applicability through calibration using observed data. The analyses of raster encoding accuracy and model behavior to runoff, sediment yields and nutrient loads for different cell-size showed that 150 m cell size indicated reasonable applicability of the model. Simulated runoff was in a good agreement with the observed data and simulated peak runoff rate was larger than the observed data. The sediment yield simulated by modified AGNPS model using irregular cell for forest area were less than that of the regular cell method. In predicting sediment yields, the result showed a different trend at each representative rural watershed. Nutrient loads simulated by the model were significantly different from the observed data.

  • PDF

Traffic Modeling and Analysis for Pedestrians in Picocell Systems Using Random Walk Model (Picocell 시스템의 보행자 통화량 모델링 및 분석)

  • Lee, Ki-Dong;Chang, Kun-Nyeong;Kim, Sehun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.135-144
    • /
    • 2003
  • Traffic performance in a microcellular system is much more affected by cell dwell time and channel holding time in each cell. Cell dwell time of a call is characterized by its mobility pattern, i.e., stochastic changes of moving speed and direction. Cell dwell time provides important information for other analyses on traffic performance such as channel holding time, handover rate, and the average number of handovers per call. In the next generation mobile communication system, the cell size is expected to be much smaller than that of current one to accommodate the increase of user demand and to achieve high bandwidth utilization. As the cell size gets small, traffic performance is much more affected by variable mobility of users, especially by that of pedestrians. In previous work, analytical models are based on simple probability models. They provide sufficient accuracy in a simple second-generation cellular system. However, the role of them is becoming invalid in a picocellular environment where there are rapid change of network traffic conditions and highly random mobility of pedestrians. Unlike in previous work, we propose an improved probability model evolved from so-called Random walk model in order to mathematically formulate variable mobility of pedestrians and analyze the traffic performance. With our model, we can figure out variable characteristics of pedestrian mobility with stochastic correlation. The above-mentioned traffic performance measures are analyzed using our model.

Prediction of Membrane Fouling Index by Using Happel Cell Model (Happel Cell 모델을 이용한 막오염 지수 예측)

  • Park, Chanhyuk;Kim, Hana;Hong, Seungkwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.632-638
    • /
    • 2005
  • Membrane fouling index such as Silt Density Index (SDI) and Modified Fouling Index (MFI) is an important parameter in design of the integrated RO/NF membrane processes for drinking water treatment. In this study, the effect of particle, membrane and feed water characteristics on membrane fouling index were investigated systematically. Higher fouling index values were observed when filtering suspensions with smaller particle size and higher feed particle concentration. Larger membrane resistance due to smaller pore size resulted in an increased membrane fouling index. The variations of feed water hardness and TDS concentrations did not show any impact on fouling index, suggesting that there were no significant colloidal interactions among particles and thus the porosity of particle cake layer accumulated on the membrane surface could be assumed to be 0.36 according to random packing density. Based on the experimental observations, fundamental membrane fouling index model was developed using Happel Cell. The effect of primary model parameters including particle size ($a_p$), particle concentration ($C_o$), membrane resistance ($R_m$), were accurately assessed without any fitting parameters, and the prediction of membrane fouling index such as MFI exhibited very good agreement with the experimental results.

Plastic Deformation and Microstructural Evolution during ECAP Using a Dislocation Cell Related Microstructure-Based Constitutive Model (전위쎌에 기초한 미세조직 구성모델을 이용한 ECAP 공정 시 소성변형과 미세조직의 진화)

  • Yoon, S.C.;Baik, S.C.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.441-444
    • /
    • 2006
  • The deformation behavior of copper during equal channel angular pressing(ECAP) was calculated using a three-dimensional version of a constitutive model based on the dislocation density evolution. Finite element simulations of the variation of the dislocation density and the dislocation cell size with the number of ECAP passes are reported. The calculated stress, strain and cell size are compared with the experimental data for Cu deformed by ECAP in a modified Route C regime. The results of FEM analysis were found to be in good agreement with the experiments. After a rapid initial decrease down to about 200nm in the first ECAP pass, the average cell size was found to change little with further passes. Similarly, the strength increased steeply after the first pass, but tended to saturate with further pressings. The FEM simulations also showed strain non-uniformities and the dependence of the resulting strength on the location within the workpiece.