• Title/Summary/Keyword: Cell segmentation

Search Result 101, Processing Time 0.022 seconds

Dual Dictionary Learning for Cell Segmentation in Bright-field Microscopy Images (명시야 현미경 영상에서의 세포 분할을 위한 이중 사전 학습 기법)

  • Lee, Gyuhyun;Quan, Tran Minh;Jeong, Won-Ki
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.3
    • /
    • pp.21-29
    • /
    • 2016
  • Cell segmentation is an important but time-consuming and laborious task in biological image analysis. An automated, robust, and fast method is required to overcome such burdensome processes. These needs are, however, challenging due to various cell shapes, intensity, and incomplete boundaries. A precise cell segmentation will allow to making a pathological diagnosis of tissue samples. A vast body of literature exists on cell segmentation in microscopy images [1]. The majority of existing work is based on input images and predefined feature models only - for example, using a deformable model to extract edge boundaries in the image. Only a handful of recent methods employ data-driven approaches, such as supervised learning. In this paper, we propose a novel data-driven cell segmentation algorithm for bright-field microscopy images. The proposed method minimizes an energy formula defined by two dictionaries - one is for input images and the other is for their manual segmentation results - and a common sparse code, which aims to find the pixel-level classification by deploying the learned dictionaries on new images. In contrast to deformable models, we do not need to know a prior knowledge of objects. We also employed convolutional sparse coding and Alternating Direction of Multiplier Method (ADMM) for fast dictionary learning and energy minimization. Unlike an existing method [1], our method trains both dictionaries concurrently, and is implemented using the GPU device for faster performance.

Development of ResNet-based WBC Classification Algorithm Using Super-pixel Image Segmentation

  • Lee, Kyu-Man;Kang, Soon-Ah
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.4
    • /
    • pp.147-153
    • /
    • 2018
  • In this paper, we propose an efficient WBC 14-Diff classification which performs using the WBC-ResNet-152, a type of CNN model. The main point of view is to use Super-pixel for the segmentation of the image of WBC, and to use ResNet for the classification of WBC. A total of 136,164 blood image samples (224x224) were grouped for image segmentation, training, training verification, and final test performance analysis. Image segmentation using super-pixels have different number of images for each classes, so weighted average was applied and therefore image segmentation error was low at 7.23%. Using the training data-set for training 50 times, and using soft-max classifier, TPR average of 80.3% for the training set of 8,827 images was achieved. Based on this, using verification data-set of 21,437 images, 14-Diff classification TPR average of normal WBCs were at 93.4% and TPR average of abnormal WBCs were at 83.3%. The result and methodology of this research demonstrates the usefulness of artificial intelligence technology in the blood cell image classification field. WBC-ResNet-152 based morphology approach is shown to be meaningful and worthwhile method. And based on stored medical data, in-depth diagnosis and early detection of curable diseases is expected to improve the quality of treatment.

Automated Cell Counting Method for HeLa Cells Image based on Cell Membrane Extraction and Back-tracking Algorithm (세포막 추출과 역추적 알고리즘 기반의 HeLa 세포 이미지 자동 셀 카운팅 기법)

  • Kyoung, Minyoung;Park, Jeong-Hoh;Kim, Myoung gu;Shin, Sang-Mo;Yi, Hyunbean
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1239-1246
    • /
    • 2015
  • Cell counting is extensively used to analyze cell growth in biomedical research, and as a result automated cell counting methods have been developed to provide a more convenient and means to analyze cell growth. However, there are still many challenges to improving the accuracy of the cell counting for cells that proliferate abnormally, divide rapidly, and cluster easily, such as cancer cells. In this paper, we present an automated cell counting method for HeLa cells, which are used as reference for cancer research. We recognize and classify the morphological conditions of the cells by using a cell segmentation algorithm based on cell membrane extraction, and we then apply a cell back-tracking algorithm to improve the cell counting accuracy in cell clusters that have indistinct cell boundary lines. The experimental results indicate that our proposed segmentation method can identify each of the cells more accurately when compared to existing methods and, consequently, can improve the cell counting accuracy.

Robust Segmentation for Low Quality Cell Images from Blood and Bone Marrow

  • Pan Chen;Fang Yi;Yan Xiang-Guo;Zheng Chong-Xun
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.637-644
    • /
    • 2006
  • Biomedical image is often complex. An applied image analysis system should deal with the images which are of quite low quality and are challenging to segment. This paper presents a framework for color cell image segmentation by learning and classification online. It is a robust two-stage scheme using kernel method and watershed transform. In first stage, a two-class SVM is employed to discriminate the pixels of object from background; where the SVM is trained on the data which has been analyzed using the mean shift procedure. A real-time training strategy is also developed for SVM. In second stage, as the post-processing, local watershed transform is used to separate clustering cells. Comparison with the SSF (Scale space filter) and classical watershed-based algorithm (those are often employed for cell image segmentation) is given. Experimental results demonstrate that the new method is more accurate and robust than compared methods.

Object detection in financial reporting documents for subsequent recognition

  • Sokerin, Petr;Volkova, Alla;Kushnarev, Kirill
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Document page segmentation is an important step in building a quality optical character recognition module. The study examined already existing work on the topic of page segmentation and focused on the development of a segmentation model that has greater functional significance for application in an organization, as well as broad capabilities for managing the quality of the model. The main problems of document segmentation were highlighted, which include a complex background of intersecting objects. As classes for detection, not only classic text, table and figure were selected, but also additional types, such as signature, logo and table without borders (or with partially missing borders). This made it possible to pose a non-trivial task of detecting non-standard document elements. The authors compared existing neural network architectures for object detection based on published research data. The most suitable architecture was RetinaNet. To ensure the possibility of quality control of the model, a method based on neural network modeling using the RetinaNet architecture is proposed. During the study, several models were built, the quality of which was assessed on the test sample using the Mean average Precision metric. The best result among the constructed algorithms was shown by a model that includes four neural networks: the focus of the first neural network on detecting tables and tables without borders, the second - seals and signatures, the third - pictures and logos, and the fourth - text. As a result of the analysis, it was revealed that the approach based on four neural networks showed the best results in accordance with the objectives of the study on the test sample in the context of most classes of detection. The method proposed in the article can be used to recognize other objects. A promising direction in which the analysis can be continued is the segmentation of tables; the areas of the table that differ in function will act as classes: heading, cell with a name, cell with data, empty cell.

Efficient Cell Tracking Method for Automatic Analysis of Cellular Sequences (세포동영상의 자동분석을 위한 효율적인 세포추적방법)

  • Han, Chan-Hee;Song, In-Hwan;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.32-40
    • /
    • 2011
  • The tracking and analysis of cell activities in time-lapse sequences plays an important role in understanding complex biological processes such as the spread of the tumor, an invasion of the virus, the wound recovery and the cell division. For automatic tracking of cells, the tasks such as the cell detection at each frame, the investigation of the correspondence between cells in previous and current frames, the identification of the cell division and the recognition of new cells must be performed. This paper proposes an automatic cell tracking algorithm. In the first frame, the marker of each cell is extracted using the feature vector obtained by the analysis of cellular regions, and then the watershed algorithm is applied using the extracted markers to produce the cell segmentation. In subsequent frames, the segmentation results of the previous frame are incorporated in the segmentation process for the current frame. A combined criterion of geometric and intensity property of each cell region is used for the proper association between previous and current cells to obtain correct cell tracking. Simulation results show that the proposed method improves the tracking performance compared to the tracking method in Cellprofiler (the software package for automatic analysis of bioimages).

Segmentation of Bacterial Cells Based on a Hybrid Feature Generation and Deep Learning (하이브리드 피처 생성 및 딥 러닝 기반 박테리아 세포의 세분화)

  • Lim, Seon-Ja;Vununu, Caleb;Kwon, Ki-Ryong;Youn, Sung-Dae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.965-976
    • /
    • 2020
  • We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature generation. Unlike conventional machine learning methods that use the hand-crafted features, we adopt the denoising autoencoder in order to generate a precise and accurate representation of the pixels. We first construct a hybrid vector that combines original image, difference of Gaussians and image gradients. The created hybrid features are then given to a deep autoencoder that learns the pixels' internal dependencies and the cells' shape and boundary information. The latent representations learned by the autoencoder are used as the inputs of a softmax classification layer and the direct outputs from the classifier represent the coarse segmentation mask. Finally, the classifier's outputs are used as prior information for a graph partitioning based fine segmentation. We demonstrate that the proposed hybrid vector representation manages to preserve the global shape and boundary information of the cells, allowing to retrieve the majority of the cellular patterns without the need of any post-processing.

Automatic Adaptive Space Segmentation for Reinforcement Learning

  • Komori, Yuki;Notsu, Akira;Honda, Katsuhiro;Ichihashi, Hidetomo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.36-41
    • /
    • 2012
  • We tested a single pendulum simulation and observed the influence of several situation space segmentation types in reinforcement learning processes in order to propose a new adaptive automation for situation space segmentation. Its segmentation is performed by the Contraction Algorithm and the Cell Division Approach. Also, its automation is performed by "entropy," which is defined on action values’ distributions. Simulation results were shown to demonstrate the influence and adaptability of the proposed method.

Classification of White Blood Cell Using Adaptive Active Contour

  • Theerapattanakul, J.;Plodpai, J.;Mooyen, S.;Pintavirooj, C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1889-1891
    • /
    • 2004
  • The differential white blood cell count plays an important role in the diagnosis of different diseases. It is a tedious task to count these classes of cell manually. An automatic counter using computer vision helps to perform this medical test rapidly and accurately. Most commercial-available automatic white blood cell analysis composed mainly 3 steps including segmentation, feature extraction and classification. In this paper we concentrate on the first step in automatic white-blood-cell analysis by proposing a segmentation scheme that utilizes a benefit of active contour. Specifically, the binary image is obtained by thresolding of the input blood smear image. The initial shape of active is then placed roughly inside the white blood cell and allowed to grow to fit the shape of individual white blood cell. The white blood cell is then separated using the extracted contour. The force that drives the active contour is the combination of gradient vector flow force and balloon force. Our purposed technique can handle very promising to separate the remaining red blood cells.

  • PDF

A Robust Method for Automatic Segmentation and Recognition of Apoptosis Cell (Apoptosis 세포의 자동화된 분할 및 인식을 위한 강인한 방법)

  • Liu, Hai-Ling;Shin, Young-Suk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.6
    • /
    • pp.464-468
    • /
    • 2009
  • In this paper we propose an image-based approach, which is different from the traditional flow cytometric method to detect shape of apoptosis cells. This method can overcome the defects of cytometry and give precise recognition of apoptosis cells. In this work K-means clustering was used to do the rough segmentation and an active contour model, called 'snake' was used to do the precise edge detection. And then some features were extracted including physical feature, shape descriptor and texture features of the apoptosis cells. Finally a Mahalanobis distance classifier classifies the segmentation images as apoptosis and non-apoptosis cell.