• Title/Summary/Keyword: Cell scattering

Search Result 213, Processing Time 0.036 seconds

Light Scattering Effect Based Silica in Dye-sensitized $TiO_2$ Photovoltaic Cells ($TiO_2$ 광전극의 광산란 특성을 이용한 염료감응형 태양전지)

  • Wang, Jiao;Jin, En Mei;Zhao, Xingguan;Park, Kyung-Hee;Gu, Hal-Bon;Park, Bok-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.213-213
    • /
    • 2010
  • In this thesis, we studied to increased to solar conversion efficiency of DSSC (dye-sensitized solar cell) using nanocrystalline $TiO_2$ semiconductor. We are preparation of $TiO_2$ photoelectrode, assembly the DSSC and put a focus in analyses electrochemical properties of DSSC and using Silica powder in $TiO_2$ photoelectrode for increase light scattering effect and improved conversion efficiency. It attempt to investigate the morphology of the photoelectrode and photovoltaic effects using field emission scanning electron microscopy (FE-SEM) and photovoltaic properties under illumination with AM 1.5 simulated sunlight. We got 146 % enhanced power conversion efficiency when the optimal content of quartz glass powder was 5 wt.% than that another content.

  • PDF

High Efficiency Dye-Sensitized Solar Cell Module (고효율 염료감응 태양전지 모듈)

  • Son Jung-Ho;Kang Man-Gu;Ryu Kwang Sun;Chang Soon Ho;Park Nam-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.147-149
    • /
    • 2005
  • Synthesis of $TiO_2$ nanoparticle paste is one of the important technologies in dye-sensitized solar cells (DSSC). Performances of the DSSCs from synthesized $TiO_2$ nanoparticle paste was similar or better than those from commercial sources. In addition. cell efficiency was further improved by using large scattering $TiO_2$ particles. Those results was utilized in manufacturing high efficiency DSSC modules.

  • PDF

Processing of Microcellular Nanocomposite Foams by Using a Supercritical Fluid

  • Wee, Dongho;Seong, Dong Gi;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.160-169
    • /
    • 2004
  • Polystyrene/layered silicate nanocomposites were prepared by melt intercalation. To examine the distribution of the clay in polymer matrix, small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) were used. Intercalated nanocomposites were obtained and their rheological properties were investigated. Microcellular nanocomposite foams were produced by using a supercritical fluid. As clay contents increased, the cell size decreased and the cell density increased. It was found that layered silicates could operate as heterogeneous nucleation sites. As the saturation pressure increased and the saturation temperature decreased, the cell size decreased and the cell density increased. Microcellular foams have different morphology depending upon the dispersion state of nanoclays.

A Spectral Inverse Scattering Technique by Using the Moment Method with Series-Expanded Basis Function : Noise Effect (급수전개된 기저함수를 갖는 모멘트방법에 의한 파수영역의 역산란 방법 : 잡음의 영향)

  • 최현철;김세윤;라정웅
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.214-223
    • /
    • 1996
  • Noise effects on image profiles reconstructed by the spectral inverse scattering technique is studied based on moment method with series-expanded basis function. It is found that the Fourier series expansion to the field distribution and the averaging of the reconstructed profile in each enlarged cell provides an effective tool for the reduction of noise effects.

  • PDF

Nanostructured Photoelectrode Materials for Improving Light-Harvesting Properties in DSSCs

  • Jeong, Hyeon-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.7.2-7.2
    • /
    • 2011
  • Photoelectrochemical solar cells such as dye-sensitized cells (DSSCs), which exhibit high performance and are cost-effective, provide an alternative to conventional p-n junction photovoltaic devices. However, the efficiency of such cells plateaus at 11~12%, in contrast to their theoretical value of 33%. The majority of research has focused on improving energy conversion efficiency of DSSC by controlling nanostructure and exploiting new materials in photoelectrode consisting of semiconducting oxide nanoparticles and a transparent conducting oxide electrode (TCO). In this presentation, we introduce monodisperesed TiO2 nanoparticles prepared by forced hydrolysis method and their superiority as photoelectrode materials was characterized with aids of optical and electrochemical analysis. Inverse opal-based scattering layers containing highly crystalline anatase nanoparticles are also introduced and their feasibility for use as bi-functional light scattering layer is discussed in terms of optical reflectance and charge generation properties as a function of optical wavelength.

  • PDF

Label-free NanoBio Imaging for New Biology and Medical Science

  • Moon, Dae Won
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.203-214
    • /
    • 2015
  • We have been developing a new label-free nanobio imaging platform using non-linear optics such as Coherent Anti-Stokes Raman Spectroscopy (CARS) and ion beam techniques based on sputtering and scattering such as Secondary Ion Mass Spectrometry (SIMS) and Medium Energy Ion Scattering Spectroscopy (MEIS), which have been widely used for atomic and molecular level analysis of semiconductors and nanomaterials. To apply techniques developed for semiconductors and nanomaterials for biomedical applications, the convergence of nano-analysis and biology were tried. Our activities on label-free nanobio imaging during the last decade are summarized in this review about non-linear optical 3D imaging, ellipsometric interface imaging, SIMS imaging, and TOF-MEIS nano analysis for cardiovascular tissues, collagen thin films, peptides on microarray, nanoparticles, and cell adhesion studies and finally the present snapshot of nanobio imaging and the future prospect are described.

Fabrication of PDMS microlens for optical detection (광학적 검출을 위한 PDMS 마이크로렌즈의 제작)

  • Park, Se-Wan;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.15-20
    • /
    • 2009
  • In a detection system based on laser light scattering, focusing an excitation laser beam into a focal point of a channel in a microfluidic chip is important for obtaining the highest excitation intensity, and consequently for obtaining a laser light scattering signal using a photodetector with a high efficiency. In this paper, we present a polydimethylsiloxane (PDMS) microfluidic chip consisting of an integrated PDMS microlens for cell detection based on laser light scattering. We fabricated PDMS microlens for optical detection system by simply putting down on PDMS chips. The PDMS microlens was fabricated by photoresist reflow and replica molding. This fabrication technique is simple and has an excellent property in terms of the microlens and a high-dimensional accuracy. The PDMS microlens integrated on the PDMS microfluidic chip has been verified to improve the laser intensity, and accordingly, the signal-to-noise ratio and sensitivity of laser light scattering detection for red blood cells(RBCs)

Current Sensing Atomic Force Microscopy Study of the Morphological Variation of Hydrated Pronton Exchange Membrane (Current Sensing Atomic Force Microscopy를 이용한 PEM의 수화 현상에 따른 모폴로지 변화 연구)

  • Kwon, Osung;Lee, Sangcheol;Son, ByungRak;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.9-16
    • /
    • 2014
  • A proton exchange membrane is a core component in the proton exchange membrane fuel cell because the role of proton exchange membrane(PEM)is supplying proton conductivity to fuel cell, a gas separator, and insulating between an anode and cathode. Among various role of PEM, supplying proton conductivity is the most important and the proton conductivity is strongly related the structural evolution of PEM by hydration. Thus a lot of studies have done by past few decade based on small angle X-ray scattering and wide angle X-ray scattering for understanding morphological structure of the PEM. Resulting from these studies, several morphological models of hydrated PEM are proposed. Current sensing atomic force microscopy (CSAFM) can map morphology and conductance on the membrane simultaneously. It can be the best tool for studying heterogenous structured materials such as PEM. In this study, the hydration of the membrane is examined by using CSAFM. Conductance and morphological images are simultaneously mapped under different relative humidity. The conductance images, which are mapped from different relative humidity, are analyzed by statistical methode for understanding ionic channel variation in PEM.

Effect of Annealing of Nafion Recast Membranes Containing Ionic Liquids

  • Park, Jin-Soo;Shin, Mun-Sik;Sekhon, S.S.;Choi, Young-Woo;Yang, Tae-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • The composite membranes comprising of sulfonated polymers as matrix and ionic liquids as ion-conducting medium in replacement of water are studied to investigate the effect of annealing of the sulfonated polymers. The polymeric membranes are prepared on recast Nafion containing the ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate ($EMIBF_4$). The composite membranes are characterized by thermogravitational analyses, ion conductivity and small-angle X-ray scattering. The composite membranes annealed at $190^{\circ}C$ for 2 h after the fixed drying step showed better ionic conductivity, but no significant increase in thermal stability. The mean Bragg distance between the ionic clusters, which is reflected in the position of the ionomer peak (small-angle scattering maximum), is larger in the annealed composite membranes containing $EMIBF_4$ than the non-annealed ones. It might have been explained to be due to the different level of ion-clustering ability of the hydrophilic parts (i.e., sulfonic acid groups) in the non- and annealed polymer matrix. In addition, the ionic conductivity of the membranes shows higher for the annealed composite membranes containing $EMIBF_4$. It can be concluded that the annealing of the composite membranes containing ionic liquids due to an increase in ion-clustering ability is able to bring about the enhancement of ionic conductivity suitable for potential use in proton exchange membrane fuel cells (PEMFCs) at medium temperatures ($150-200^{\circ}C$) in the absence of external humidification.

Quality Characteristics of Korean Red Ginseng Powder with Different Milling Methods (분쇄방법에 따른 고려홍삼분말의 품질특성)

  • 서창훈;이종원;도재호;김나미;양재원;장규원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.370-374
    • /
    • 2003
  • Cell cracking method using a non-collision was evaluated for the possibility of new red ginseng grinding technique. Based on particle size distribution analysis by 1size shaker, the ratios of 100 mesh penetrated particles were 94.9% for hammer mill (group A) and 95.6% for cell crack (group B). The ratio of 120 mesh penetrated particle of group A was higher than that in group B. The particle size distributions for 100 mesh non-penetrated Powder between 2 groups were not significantly different, and particle size distribution analysis by laser scattering analyzer showed that the particle size ranges were 0.77~128.07 ${\mu}{\textrm}{m}$ for group A and 4.24~180.07 ${\mu}{\textrm}{m}$ for group B. The Particle size distribution in group A was more broad than that in group B. The mean particle size in group B was larger than that in group A, while the standard deviation of particle size distribution in group B was less than that in group A. Structural surface characteristics, in group A, particle size distribution was broad and the distribution curve was amorphous. The structure of individual particles was similar to unequal stone which was roughly grinded and had soft cotton-like surface. In the contrary, in group B, particle size distribution was relatively narrow and also individual size particles were ubiquitously distributed. The structure of individual particles was unequal cut stone shape.