• 제목/요약/키워드: Cell resistance

검색결과 2,449건 처리시간 0.038초

Upregulation of Fas in epithelial ovarian cancer reverses the development of resistance to Cisplatin

  • Fan, Yang;Wang, Long;Han, Xuechuan;Liu, Xueqin;Ma, Hongyun;Ding, Yonghui
    • BMB Reports
    • /
    • 제48권1호
    • /
    • pp.30-35
    • /
    • 2015
  • This study was to investigate the role of Fas in the development of Cisplatin-resistant ovarian cancer. On the cellular level, Fas expression was significantly reduced in Cisplatin resistant A2780 (A2780/CP) cells compared with A2780 cells. Fas silence with siRNA would promote tumor cell lines proliferation, facilitate tumor cell cycle transition of G1/S, prevent cell apoptosis, and promote cell migration. Expression of drug resistance gene was negatively correlated to Fas. In nude mice metastasis model of human ovarian carcinoma by subcutaneous transplantation, after Ad-Fas injected intratumorly, we found that upregulation of Fas could inhibit transplantation tumor tissue growth and reduce the expression of drug resistance gene. Our results indicated that upregulation of Fas in epithelial ovarian cancer reversed the development of resistance to Cisplatin. In conclusion, our findings suggested that Fas might act as a promising therapeutic target for improvement of the sensibility to Cisplatin in ovarian cancer.

Plant Defence Responses: Current Status and Future Exploitation

  • Yun, Byung-Wook;Gray J, Loake
    • Journal of Plant Biotechnology
    • /
    • 제4권1호
    • /
    • pp.1-6
    • /
    • 2002
  • Plants have developed a sophisticated battery of defence responses to protect themselves against attempted pathogen ingress. Manipulation of these defence mechanisms may provide significant opportunities for crop improvement. While plant resistance genes have had a long service history in plant breeding, they possess significant limitations. Recent advances are now providing significant insights into strategies designed to increase the field durability of this class of genes. Hypersensitive cell death is a common feature underlying the deployment of plant defence responses against biographic pathogens. In contrast, necrotrophic pathogens actively kill plant cells. Recently, transgenic plants have been developed that either promote or suppress cell death, providing resistance against either biotrophic or necrotrophic pathogens respectively. Methyl-jasmonate is a key signalling molecule in the establishment of resistance against some fungal pathogens. Increasing the concentration of this molecule in plant cells has been shown to increase resistance against Botrytis cineria, without significantly imparting plant growth or development. Due to the multifarious infection strategies employed by plant pathogens, how-ever, it is unlikely a single commercial product will prove a panacea for global disease control. Future stategies will more likely entail an integrated disease management approach.

PEM 연료전지의 전력-전류, 전압-전류 특성에 관한 연구 (A Study on the P-I, I-V Characteristics of PEMFC)

  • 정유라;최용성;황종선;이경섭
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.557-562
    • /
    • 2009
  • Recently, researchers are developing a new, clean, renewable and sustainable energy to the industrial areas and the residential areas. Solar cell and fuel cell energy are presented in this paper. The paper shows the P-I and I-V characteristics of fuel cells which are connected in parallel and series. And the voltage drop of internal resistance of the fuel cell decreases with the increasing of the current of the fuel cell. A voltage drop at the internal resistance is increased according to the current, thus the terminal voltage is decreased. The internal resistance is calculated $0.3[\Omega]$ from maximum power transfer condition.

Update of Research on Drug Resistance in Small Cell Lung Cancer Chemotherapy

  • Chen, Yi-Tian;Feng, Bing;Chen, Long-Bang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.3577-3581
    • /
    • 2012
  • Small cell lung cancer (SCLC) is characterized by a short cell doubling time, rapid progression and early occurrence of blood-borne and lymph metastasis. The malignancy is the highest of all lung cancer types. Although SCLC has a relatively good initial response to chemotherapy as well as radiotherapy, relapse or disease progression may occur quickly after the initial treatment. Drug resistance, especially multi-drug resistance, is the most important cause of failure of SCLC chemotherapy. This article provides a brief update of research on mechanisms of drug resistance in SCLC and reversal strategies.

CAPACITY ANALYSIS OF THE SILVER OXIDE-ZINC CELL (PHASE 1)

  • 이완구
    • 기술사
    • /
    • 제14권4호
    • /
    • pp.15-25
    • /
    • 1981
  • Electrical behaviors of the divalent silver oxide-zinc cell were analyzed for imporving capacity and keeping electrodes from passivation or sharp increases of cell internal resistance in the course of discharge. One of primary factors in relation to lowering performance can be depicted by cell internal resistance increase being created by various routes, first by insufficiency and/or the carbonation of the electrolyte, secondly by barrier blockage, thirdly by electrode passivation which are due to improper material use of wrong processing, and by gassing as fourth cause. The carbonation causes electrobyte to have impedance up as well as poor amalgamation, resulting in vigorous corrosion reaction of copper plated inner top, evolving hydrogen gas. Electrical characteristics of the cell was reviewed to elucidate relationships between the discharge capacity and the cell internal resistance.

  • PDF

전기화학적 기법에 의한 미생물연료전지 내부저항 특성 파악 및 전력관리시스템 연계 전압 변화와 유기물 저감에 미치는 영향 (Identification of Internal Resistance of Microbial Fuel Cell by Electrochemical Technique and Its Effect on Voltage Change and Organic Matter Reduction Associated with Power Management System)

  • 장재경;박혜민;김태영;양윤석;여정진;강석원;백이;권진경
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권5호
    • /
    • pp.220-228
    • /
    • 2018
  • The internal resistance of microbial fuel cell (MFC) using stainless steel skein for oxidizing electrode was investigated and the factors affecting the voltage generation were identified. We also investigated the effect of power management system (PMS) on the usability for MFC and the removal efficiency of organic pollutants. The performance of a stack microbial fuel cell connected with (PMS) or PMS+LED was analyzed by the voltage generation and organic matter reduction. The maximum power density of the unit cells was found to be $5.82W/m^3$ at $200{\Omega}$. The maximum current density was $47.53A/m^3$ without power overshoot even under $1{\Omega}$. The ohmic resistance ($R_s$) and the charge transfer resistance ($R_{ct}$) of the oxidation electrode using stainless steel skein electrode, were $0.56{\Omega}$ and $0.02{\Omega}$, respectively. However, the sum of internal resistance for reduction electrode using graphite felts loaded Pt/C catalyst was $6.64{\Omega}$. Also, in order to understand the internal resistance, the current interruption method was used by changing the external resistance as $50{\Omega}$, $300{\Omega}$, $5k{\Omega}$. It has been shown that the ohm resistance ($R_s$) decreased with the external resistance. In the case of a series-connected microbial fuel cell, the reversal phenomenon occurred even though two cells having the similar performance. However, the output of the PMS constantly remained for 20 hours even when voltage reversal occurred. Also the removal ability of organic pollutants (SCOD) was not reduced. As a result of this study, it was found that buffering effect for a certain period of time when the voltage reversal occurred during the operation of the microbial fuel cell did not have a serious effect on the energy loss or the operation of the microbial fuel cell.

An Empirical Study about the Segmented Cell in Anode Side of PEMFC

  • 김재호;손영준;김민진;박구곤;임성대
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.357-360
    • /
    • 2009
  • The present study focused on the segmented cell which has the similar performance to unaltered (not segmented) cell in real operating condition. Many literatures have been made the segmented cell to observe the behavior of local current density distribution in the single cell. However, it has been lack of scheme to segment the cell in that the detailed interpretation of segmenting in analytic point of view was insufficient. Hence, the basic idea of segmenting was introduced to determine the component to be segmented in anode side of unit cell. The electrical contact/bulk resistance was measured by using four wire/probe method through each part of cell components including MEA, GDL, Bipolar Plate and Current Collector. Electron transport mechanism was predicted by comparing resistance values which were obtained from the experiment. As a result, this offered a great benefit to segment the cell efficiently. With this method further experiments would be conducted in research areas which require current density distribution at the same operating condition as unaltered cell.

  • PDF

The Association of Increased Lung Resistance Protein Expression with Acquired Etoposide Resistance in Human H460 Lung Cancer Cell Lines

  • Lee, Eun-Myong;Lim, Soo-Jeong
    • Archives of Pharmacal Research
    • /
    • 제29권11호
    • /
    • pp.1018-1023
    • /
    • 2006
  • Chemoresistance remains the major obstacle to successful therapy of cancer. In order to understand the mechanism of multidrug resistance (MDR) that is frequently observed in lung cancer patients, here we studied the contribution of MDR-related proteins by establishing lung cancer cell lines with acquired resistance against etoposide. We found that human H460 lung cancer cells responded to etoposide more sensitively than A549 cells. Among MDR-related proteins, the expression of p-glycoprotein (Pgp) and lung resistance protein (LRP) were much higher in A549 cells compared with that in H460 cells. When we established H460-R1 and -R2 cell lines by progressive exposure of H460 cells to increasing doses of etoposide, the response against etopbside as well as doxorubicin was greatly reduced in R1 and R2 cells, suggesting MDR induction. Induction of MDR was not accompanied by a decrease in the intracellular accumulation of etoposide and the expression of MDR-related proteins that function as drug efflux pumps such as Pgp and MRP1 was not changed. We found that the acquired resistance paralleled an increased expression of LRP in H460 cells. Taken together, our data suggest the implicative role of LRP in mediating MDR in lung cancer.

PEMFC용 금속분리판 코팅 기술 개발 : II. 코팅 금속분리판 연료전지 성능 특성 연구 (Development of Surface Coating Technology for Metallic Bipolar Hate in PEMFC : II. Study on the PEMEC Performance of Coated Metallic Bipolar Plate)

  • 윤용식;정경우;양유창;안승균;전유택;나상묵
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.352-355
    • /
    • 2006
  • As the stainless steel has good corrosion resistance, mechanical property and ease of manufacture, it has been studied as the candidate material of metallic bipolar plate for automotive PIMFC. But, metal is dissolved under fuel cell operating conditions Dissolved ions contaminate a membrane electrode assembly (MEA) and, decrease the fuel cell performance. In addition, metal oxide formation on the surface of stainless steel increases the contact resistance in the fuel cell. These problems have been acted as an obstacle in the application of stainless steel to bipolar plate. Therefore, many kinds of coating technologies have been examined in order to solve these problems. In this study, stainless steel was coated in order to achieve high conductivity and corrosion resistance by several methods. Contact resistance was measured by using a tensile tester and impedance analyzer Corrosion characteristics of coated stainless steel were examined by Tafel-extrapolation method from the polarization curves in a solution simulating the anodic and cathodic environment of PEMFC. Fuel cell performance was also evaluated by single cell test. We tested various coated metal bipolar plate and conventional and graphite were also tested as comparative samples. In the result, coated stainless steel bipolar plate exhibited better cell performance than graphite to bipolar plate.

  • PDF