• 제목/요약/키워드: Cell proliferation and growth

검색결과 1,578건 처리시간 0.035초

Effect of Chlorella Growth Factor on the Proliferation of Human Skin Keratinocyte

  • Yong-Ho Kim;Yoo-Kyeong Hwang;Yu-Yon Kim;Su-Mi Ko;Jung-Min Hwang;Yong-Woo Lee
    • 대한의생명과학회지
    • /
    • 제8권4호
    • /
    • pp.229-234
    • /
    • 2002
  • Chlorella is rich in chlorella growth factor (CGF). A review of the literature has described that CGF improves the capability of a Th1-based immunity, anticancer, antioxidant antibacterial activity, growth promotion, wound healing and so on, but has not studied the effect for the metabolism and the proliferation of human skin keratinocyte. The aim of this study was to examine the effect of metabolism and the proliferation of human skin keratinocyte in vitro. CGF was extracted with an autoclaving method which is a modified hot-water extraction method from dried chlorella and conformed by means of absorbance 0.22 at 260 nm. We have measured the extracellular acidification rate (ECAR) of the CGF by Cytosensor$^{\circledR}$ Microphysiometer and evaluated responsiveness depending upon the dosage on the HaCaT cell. The ECAR for the concentrations of 0.15, 1.5, 15, 150 $\mu\textrm{g}$/ml of CGF increased as a 103.6, 128.2, 149.0 and 423.9%, respectively compared to control (0.0 $\mu\textrm{g}$/ml, 100% ECAR). The ECAR for ErbBl tyrosine kinase inhibited by 4-anilinoquinazolines, $C_{16}$H$_{14}$BrN$_3$O$_2$.HCl on tile HaCaT cells with the amounts of 10 $\mu\textrm{g}$/ml of the CCF compared with 100 $\mu\textrm{g}$/ml of rhEGF. The conclusion of the study is that CGF might increase human epidermal keratinocyte proliferation through the interaction between the epidermal growth factor receptor and itself.

  • PDF

Cancer Metabolism: Fueling More than Just Growth

  • Lee, Namgyu;Kim, Dohoon
    • Molecules and Cells
    • /
    • 제39권12호
    • /
    • pp.847-854
    • /
    • 2016
  • The early landmark discoveries in cancer metabolism research have uncovered metabolic processes that support rapid proliferation, such as aerobic glycolysis (Warburg effect), glutaminolysis, and increased nucleotide biosynthesis. However, there are limitations to the effectiveness of specifically targeting the metabolic processes which support rapid proliferation. First, as other normal proliferative tissues also share similar metabolic features, they may also be affected by such treatments. Secondly, targeting proliferative metabolism may only target the highly proliferating "bulk tumor" cells and not the slowergrowing, clinically relevant cancer stem cell subpopulations which may be required for an effective cure. An emerging body of research indicates that altered metabolism plays key roles in supporting proliferation-independent functions of cancer such as cell survival within the ischemic and acidic tumor microenvironment, immune system evasion, and maintenance of the cancer stem cell state. As these aspects of cancer cell metabolism are critical for tumor maintenance yet are less likely to be relevant in normal cells, they represent attractive targets for cancer therapy.

The Effect of Epidermal Growth Factor on Cell Proliferation and Its Related Signal Pathways in Pig Hepatocytes

  • Kim Dong-Il;Han Ho-Jae;Park Soo-Hyun
    • 대한의생명과학회지
    • /
    • 제12권3호
    • /
    • pp.249-254
    • /
    • 2006
  • It has been reported that liver is a very important organ to xenotransplantation. Pig is known to be a most suitable species in transplantation of human organs. However, the physiological function of pig hepatocytes is not clear elucidated. Epidermal growth factor (EGF) is known to be a mitogen in various cell systems. Thus, we examined the effect of EGF on cell proliferation and its related signal cascades in primary cultured pig hepatocytes. EGF stimulates cell proliferation in a dose (>1ng/ml) dependent manner. EGF-induced increase of $[^3H]-thymidine$ incorporation was blocked by AG 1478 ($10^{-6}M$, an EGF receptor antagonist) genistein and herbymycin A (tyrosine kinase inhibitors, $10^{-6}M$), suggesting the role of activation and tyrosine phosphorylation of EGF receptor. In addition, EGF-induced increase of $[^3H]-thymidine$ incorporation was prevented by neomycin $(10^{-4}M)$, U73122 $(10^{-5}M)$ (phospholipase C [PLC] inhibitors), staurosporine ($(10^{-8}M)$, or bisindolylmaleimide I $(10^{-6}M)$ (protein kinase C [PKC] inhibitors), suggesting the role of PLC and PKC. Moreover, EGF-induced increase of $[^3H]-thymidine$ incorporation was blocked by PD 98059 (a p44/42 mitogen activated protein kinase [MAPK] inhibitor), SB 203580 (a p38 MAPK inhibitor), and SP 600125 (a JNK inhibitor). EGF increased the translocation of PKC from cytosol to membrane fraction and activated p42/44 MAPK, p38 MAPK and JNK. In conclusion, EGF stimulates cell proliferation via PKC and MAPK in cultured pig hepatocytes.

  • PDF

Insulin-like growth factor-II가 방사선에 의한 MC3T3 조골세포의 세포사멸에 미치는 영향 (MODULATION OF IRRADIATION-INDUCED CELL DEATH BY INSULIN-LIKE GROWTH FACTOR-II IN MC3T3 OSTEOBLASTS)

  • 박경록
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제33권6호
    • /
    • pp.617-624
    • /
    • 2007
  • Insulin-like growth factor(IGF) is the most abundant growth factor in bone matrix. Recent studies have shown that it can sensitize apoptotic cell death of osteoblasts. Thus, this study investigated whether IGF-II aggravates irradiation-induced cell death of osteoblasts. Cultured MC3T3 osteoblasts were irradiated and IGF-II was added at the concentration of 50 ng/ml immediately after the irradiation. Cell viability was measured by MTT assay. Changes in cell death and cell cycle were analyzed by flow cytometry. The expression of proapoptotic gene bax and antiapoptotic gene bcl-2 was quantified by real time RT-PCR and Western blot. A dose of 30 Gy caused G2/M arrest and increased cell death through both necrosis and apoptosis, while irradiation from 4 to 10 Gy little affected cell cycle and death. IGF-II treatment reduced cell viability without stimulating cell proliferation and changing cell cycle. Combined treatment of IGF-II with irradiation decreased cell viability and proliferation and increased cell death along with G2/M arrest. These effects were not different from those of irradiation only. At transcriptional and protein levels, IGF-II treatment did not affect bax and bcl-2 expression, whereas irradiation increased the expression ofbax without changes in bcl-2. IGF-II in combination with irradiation showed similar findings. These results suggest that IGF-II could modulate apoptotic cell death through mechanisms other than an imbalance between bax and bcl-2 gene expression, although its effect was overridden by irradiation.

Effects of Monoclonal Antibodies against Human Stathmin Combined with Paclitaxel on Proliferation of the QG-56 Human Lung Carcinoma Cell Line

  • Yuan, Shao-Fei;Chen, Wen-Jun;Zhu, Lin-Jia;Zheng, Wei-E.;Chen, Hua;Xiong, Jian-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2967-2971
    • /
    • 2012
  • Objective: To explore whether monoclonal antibodies against stathmin and the chemotherapuetic agent paclitaxel have synergenic effects in inhibiting growth and inducing apoptosis in human QG-56 cells. Methods: QG-56 cells were treated with monoclonal antibodies against stathmin or paclitaxel alone or in combination, with untreated cells used as controls. After 24, 48, 72 and 96 hours the cell growth condition was observed under an inverted microscope and inhibition was studied by MTT assay; apoptosis was analyzed by flow cytometry. Results: The populations decreased and cell shape and size changed after the various treatments. Monoclonal antibodies against stathmin and paclitaxel used alone or incombination inhibited the proliferation of QG-56 cells, especially in combination with synergism (P<0.05). Combined treatment also resulted in a significantly higher apoptosis rate than in the other groups (P<0.05). Conclusions: Monoclonal antibodies against stathmin and paclitaxel used alone or in combination can inhibit proliferation of QG-56 cells and induce apoptosis when applied together. The observed synergistic effects may have important implications for clinical application.

여정실 물 분획물이 인체 진피 섬유아세포의 증식에 미치는 영향 (Effect of Fructus Ligustri Lucidi $H_2O$ Extract on Cell Proliferation in Hman Dermal Fibroblast)

  • 임난영;김대성;고경숙;문연자;우원홍
    • Korean Journal of Acupuncture
    • /
    • 제28권3호
    • /
    • pp.43-51
    • /
    • 2011
  • Objectives : In this study, we investigated the effect of Fructus Ligustri Lucidi $H_2O$ fraction (FLLW) on cell proliferation, and the phosphorylation of ERKs and Akt in human dermal fibroblast neonatal (HDFn). Methods : After treatment of HDFn with FLLW, MTT assay was performed to quantitatively determine cellular viability. The ERK and Akt pathways were analyzed in vitro by Western blot in a HDFn. HDFn proliferation after FLLW and minoxidil treatment in the absence or presence of PD98059, a MEK inhibitor, LY294002, and a PI3K inhibitor, was examined by Western blot or MTT assay. Results : FLLW increased cell proliferation in a dose-dependent manner and minoxidil used as positive control also induced cell proliferation in HDFn. FLLW increased the phosphorylation of ERK and Akt. In addition, minoxidil, too, induced the phosphorylation of ERK and Akt in HDFn. PD98059 and LY294002 significantly attenuated FLLW-inducible p-ERK and p-Akt expression and proliferation in cultured HDFn. Conclusions : Our results suggest that FLLW stimulates the growth of fibroblast cells through ERK and Akt pathways. Therefore, FLLW is a potential agent for the inducer of fibroblast growth.

Aloe vera가 항암제의 세포독성에 미치는 영향 (Effects of Aloe vera on the Cytotoxicity of Anticancer Drugs in Vitro)

  • 표명윤;윤지현
    • 약학회지
    • /
    • 제43권1호
    • /
    • pp.104-110
    • /
    • 1999
  • We investigated effects of methanol extract of Aloe vera on anticancer drugs(cisplatin, mitomycin C, 5-fluorouracil)-induced growth inhibition in p388, L1210, HCT-15, SK-HepG-1 as cancer cell lines and mouse splenocytes as a normal cell by MTT assay, respectively. We also examined the effects of aloe extract and mitomycin C on the mitogen(Con, A, LPS)-induced splenocyte proliferation. Aloe extract(0.25 mg/m , 1.25 mg/m , 2.5 mg/m , 5.0 mg/m ) showed dose-dependently selective cytotoxicity against the cancer cell lines. In contrast, Aloe extract increased the growth and proliferation of the normal mouse splenocytes. The combination of aloe extract with anticancer drugs showed an additive effect for the cytotoxicity against cancer cell lines. However, that combination reduced clealy the anticancer drugs-induced toxicity against the normal mouse splenocytes.

  • PDF

Identification of the Arabidopsis thaliana cell growth defect factor suppressing yeast cell proliferation

  • Kim, Kyung-Min;Uchimiya, Hirofumi;Sohn, Jae-Keun
    • Current Research on Agriculture and Life Sciences
    • /
    • 제30권1호
    • /
    • pp.1-11
    • /
    • 2012
  • We identified cdf based on screening of the Arabidopsis cDNA library for functional suppressors of the AtBI-1 (a gene described to suppress the cell death induced by Bax gene expression in yeast). The cdf was located on Chr. V and was composed of 5 exons and 4 introns. It encodes a protein of 258 amino acid residues with a molecular weight of 28.8 kDa. The protein has 3 transmembrane domains in the C-terminal region. The cdf has one homologue, named cdf2, which was found in Arabidopsis. Like cdf, cdf2 also induced growth defect in yeast. The effect of the cell growth defect factor was somewhat lower than Bax. cdf could arrest the growth of yeast. Its localization to the nucleus was essential for the suppression of yeast cell proliferation. Morphological abnormality of intracellular network, which is a hallmark of AtBI-1, was attenuated by expression of cdf.

  • PDF

Substance P가 T 임파구의 세포증식과 IL-2 생산에 미치는 영향 (Effects of Substance P on the Cell Proliferation and IL-2 Production of T Lymphocyte)

  • 문진균;최병선;이석초;김형섭
    • Journal of Periodontal and Implant Science
    • /
    • 제27권4호
    • /
    • pp.805-818
    • /
    • 1997
  • Immune responses of periodontal tissue may be regulated by products of sensory afferent nerve endings such as neuropeptides. Substance P(SP), a tachykinin neuropeptide, has been previously reported to stimulate the activities of T lymphocyte. Therefore, I examined the role of SP in IL-2 production and cell proliferation by using a homogeneous line of T lymphocytes(Jurkat and HuT78). Cell proliferation rate was determined by [$^3H$]-thymidine incorporation test, and IL-2 was quantitated by the growth rate of CD4+ IL-2-dependent T lymphocyte line CTLL-2. SP stimulated cell proliferation of T lymphocytes at the concentration of $10^{-12}$ and $10^{-8}$M in a biphasic bell-shape dose-dependent manner. However, SP alone did not induce IL-2 release at the concentration range of $10^{-6}$ to $10^{-14}$M. The upregulation of IL-2 release was observed when $10^{-12}$M SP was applied together with mitogens such as Con A or PHA+PMA on T cell lines, especially on Jurkat. Con A or PHA+PMA demonstrated to increase the rate of cell proliferation of Jurkat, which had shown to produce much amount of IL-2 indicating that mitogen-induced cell proliferation might be partially influenced by released IL-2. It was concluded that regulatory effects of SP on the immune/inflammatory response could be mediated through the costimulatory upregulation of IL-2 production and increase of cell proliferation of T lymphocyte.

  • PDF

δ-Aminolevulinic acid (ALA) 유도체들의 미토콘드리아 탈분극 유도에 의한 인간 섬유아세포의 세포분열 억제 (Inhibition of Proliferation of Human Fibroblast by δ-Aminolevulinic Acid (ALA) Derivatives through the Induction of Mitochondria Membrane Depolarization)

  • 전용우;한두경;이진아;조수연;장덕진
    • KSBB Journal
    • /
    • 제30권6호
    • /
    • pp.313-318
    • /
    • 2015
  • ${\delta}$-Aminolevulinic acid (ALA) is an endogenous metabolite formed in the mitochondria from succinyl-CoA and glycine, and plays a key role in the living body as an intermediate of the compound in the porphyrin biosynthesis pathway. ALA has been commonly used in photodynamic therapy for several years, because ALA is of interest as a biodegradable mediator, a growth regulator, and an effective agent used in dermatology. Here, we determined which ALA derivatives were the most effective for the inhibition of the cell proliferation and growth of human fibroblast. As a result, we found that the treatment of ALA derivatives including ALA, ALAP (ALA phosphate salt), MAL (Methyl 5-aminolevulinate hydrochloride salt), PBGL (phophobilinogen lactam) and PBGH (phophobilinogen-HCl) could attenuate cell proliferation of human fibroblast cells. Among them, PBGH was the most effective derivative. In addition, PBGH treatment could induce mitochondrial membrane depolarization, leading to cell death of human fibroblast. These results suggest that mitochondrial membrane depolarization induced by ALA and PBGH treatment might be responsible for inhibition of cell proliferation and death. Taken together, our results propose the possibility that PBGH can be used as one of the effective drugs in human skin disease, psoriasis.