• Title/Summary/Keyword: Cell performance

Search Result 5,043, Processing Time 0.031 seconds

Comparison of Electrode Backing Materials for Polymer Electrolyte Membrane Fuel Cells

  • Sasikumar, G.;Ryu, H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.183-186
    • /
    • 2003
  • In a PEM fuel cell electrode, backing layer has tremendous impact on electrode performance. The backing layer provides structural support for the porous electrode, distributes the reactants to the other layers and acts as a current collector. It has major influence on the water management in a PEM fuel cell. Selection of suitable backing layer material for the fabrication of electrode is thus very important to achieve high performance. In this paper we have compared the performance of PEM fuel cell electrodes fabricated using carbon paper EC-TPI-060T, carbon cloth EC-CCI-060T, (ElectroChem Inc.USA) and Carbon cloth from Textron, USA (CPW 003 grade). Mass transport problem was observed under non-pressurized condition, at high current densities, in the caie of EC-CC1-060T carbon cloth electrode (at $50^{\circ}C$), due to its higher thickness. The performance of carbon paper electrode was higher than EC-CCI-060T carbon cloth electrode. The performance of Textron carbon cloth was comparable to EC-TPI -060T carbon paper.

PEMFC performance on reverse voltage by fuel starvation (연료 부족에 의한 고분자전해질형 연료전지의 역전압 성능)

  • Lee, Hung-Joo;Song, Hyun-Do;Kim, Jun-Bom
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.133-140
    • /
    • 2006
  • The performance of proton exchange membrane fuel cell was decreased by reverse voltage using fuel starvation. Performance decrease in local area could be affected by duration and extent of reverse voltage. Hydrogen and air stoichiometic ratio was used to find the experimental condition of abrupt voltage decrease. LabVIEW was used to make control logic of automatic load off system in preset voltage. Reverse voltage experiment was done down to -1.2 V at constant current condition. When fuel cell voltage was reached to preset voltage, electronic load was disconnected to make open circuit voltage for 1 minute. Fuel cell performance was checked every 5 cycle and the degree of performance decrease and/or recovery was estimated. Ohmic resistance and charge transfer resistance were increased and platinum surface area was reduced 41% after reverse voltage experiment.

A Case Study of Small-Cell Lung Cancer with Multiple Brain Metastases Patient who Showed Improvement of Delirium and Performance Status (섬망 증세와 신체 활동도에 호전을 보인 뇌전이가 있는 소세포폐암 환자 1례)

  • Park, So-Ra;Lee, Soo-Min;Choi, Seong-Heon;Jung, Yee-Hong;Lee, Soo-Kyung
    • Journal of Sasang Constitutional Medicine
    • /
    • v.26 no.4
    • /
    • pp.400-408
    • /
    • 2014
  • Objectives The aim of this study was to report the improvement of delirium and performance status in the small-cell lung cancer patient who had multiple brain metastases and pericardial effusion after Sasang constitutional treatment. Methods We retrospectively reviewed the medical records, medical laboratory and image scans of 71-year-old male patient diagnosed as small-cell lung cancer. Results The small-cell lung cancer with multiple brain metastases patient sometimes talked deliriously even after the whole brain radiation therapy. During the hospitalization period, he showed delirium. We treated him with Gihwangbaekho-tang and Dojeokgangki-tang as a main therapy. After treatment, he didn't show delirium and performance status was improved. Conclusions A small-cell lung cancer with multiple brain metastases patient showed the improvement of symptoms (delirium, poor performance status, constipation and poor oral intake) with the treatment of Gihwangbaekho-tang, Yanggyuksanhwa-tang and Dojeokgangki-tang.

Computational Analysis of Heat and Mass Transfer in a Planar-type Solid Oxide Fuel Cell (저온 평판형 고체산화물 연료전지 내부 열 및 물질전달 현상에 대한 전산해석)

  • Jeong, Hee-Seok;Cha, Hoon;Sohn, Jeong-Lak;Ro, Sung-Tack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.648-654
    • /
    • 2005
  • The performance prediction of a planar-type solid oxide fuel ceil is conducted by a computational analysis. The transport processes are formulated with the help of a simplified treatment of heat generation by the electrochemical reaction. From the result of the computational analysis, it is shown that the electrochemical reaction is closely related to the transport phenomena inside a solid oxide fuel cell. Transport phenomena including heat and mass transfer have influence on the distribution of local current density and as a result, on the performance characteristics of the fuel cell. Computational analysis is also extended to the parametric study to investigate the performance behavior of the fuel cell with different amount of supplied fuel flow rates. It is also demonstrated that the mathematical formulation and computational procedures proposed in this study can be applied to prove the importance of the specific TPB(Three-Phase-Boundary) area in the manufacturing process of electrodes in a solid oxide fuel cell.

  • PDF

ZnO nanoparticles with different concentrations inside organic solar cell active layer

  • Saravanan, Shanmugam;Ismail, Yasser A.M.;Silambarasan, Murugesan;Kishi, Naoki;Soga, Tetsuo
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.275-284
    • /
    • 2016
  • In the present work, ZnO nanoparticles (NPs) have been dispersed alone in the same solvent of the active layer for improving performance parameters of the organic solar cells. Different concentrations of the ZnO NPs have been blended inside active layer of the solar cell based on poly(3-hexylthiophene) (P3HT), which forms the hole-transport network, and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), which forms the electron-transport network. In the present investigations, the ZnO NPs may represent an efficient tool for improving light harvesting through light scattering inside active layer, electron mobility, and electron acceptance strength which tend to improve photocurrent and performance parameters of the investigated solar cell. The fill factor (FF) of the ZnO-doped solar cell increases nearly 14% compared to the non-doped solar cell when the doping is 50%. The present investigations show that ZnO NPs improve power conversion efficiency of the solar cell from 1.23% to 1.64% with increment around 25% that takes place after incorporation of 40% as a volume ratio of the ZnO NPs inside P3HT:PCBM active layer.

Design of a Heat Release System for Fuel Cell Vehicles (연료전지 자동차 열방출 시스템의 설계)

  • Kim, Min-Soo;Kim, Sung-Chul;Park, Min-Su;Jung, Seung-Hun;Yoon, Seok-Ho
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.49-54
    • /
    • 2005
  • There is close relation between the heat generation in the fuel cell stack and the fuel performance. In PEM fuel cell vehicles, the stack coolant temperature is about $65^{\circ}C$, which is far lower than that for general automobile engine. Therefore, it is hard to release heat generated in the stack by using a radiator of limited size because of the reduced temperature difference between the coolant and the ambient air. In this study, indirect stack cooling system using $CO_2$ heat pump was designed and its stack cooling performance in releasing heat to the ambient was investigated. This work focuses on a series of processes that grasp the relation among the fuel cell power, the radiator capacity and the stack temperature. The purpose of this work is to find out a way to properly release sufficient amount of heat through the finite sized radiator, so that the slack power generation can not be deteriorated due to the stack temperature increase. The optimization between the compressor power consumption and the fuel cell output power can be carried out to maximize the performance of fuel cell system.

  • PDF

Computational Analysis of Transport Phenomena in a Planar-Type Solid Oxide Fuel Cell with a Simplified Treatment of the Electrochemical Heat Generation (전기화학 반응에 의한 생성 열의 단순화된 처리 기법을 이용한 평판형 고체산화물 연료전지 내부의 이동현상에 대한 전산 해석)

  • Cha, Hoon;Sohn, Jeong-Lak;Ro, Sung-Tack
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.846-853
    • /
    • 2005
  • For the performance prediction of a planar-type solid oxide fuel cell, the computational analysis of transport phenomena with a simplified treatment of heat generation by the electrochemical reaction is conducted. From the result of the computational analysis, it is shown that the electrochemical reaction is closely related to the transport phenomena inside a solid oxide fuel cell. Transport phenomena including heat and mass transfer influences on the distribution of local current density and, as a result, on the performance characteristics of the fuel cell. Computational analysis is also extended to the parametric study to investigate the performance behavior of the fuel cell with different amount of supplied fuel flow rates. It is also demonstrated that the mathematical formulation and computational procedures proposed in this study can be applied to prove the importance of the specific TPB area in the manufacturing process of electrodes in solid oxide fuel cells.

Flow Field Design and Stack Performance Evaluation of the Thin Plate Separator for High Temperature Polymer Electrolyte Membrane Fuel Cell (고온 고분자전해질 연료전지 박판형 분리판의 유로 설계 및 스택 성능 평가)

  • KIM, JI-HONG;KIM, MINJIN;KIM, JINSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.442-449
    • /
    • 2018
  • Research on High temperature polymer electrolyte fuel cell (HT-PEMFC) has actively been conducted all over the world. Since the HT-PEMFC can be operated at a high temperature of $120-180^{\circ}C$ using phosphoric acid-doped polybenzimidazole (PBI) electrolyte membrane, it has considerable advantages over conventional PEMFC in terms of operating conditions and system efficiency. However, If the thermal distribution is not uniform in the stack unit, degradation due to local reaction and deterioration of lifetime are difficult to prevent. The thin plate separator reduces the volume of the fuel cell stack and improves heat transfer, consequently, enhancing the cooling effect. In this paper, a large area flow field of thin plate separator for HT-PEMFC is designed and sub-stack is fabricated. We have studied stack performance evaluation under various operating conditions and it has been verified that the proposed design can achieve acceptable stack performance at a wide operating range.

Performance of Direct Methanol Fuel Cell (DMFC) based on New Electrode Binder (sPEEK/Nafion): Effect of Binder Content (새로운 전극 바인더(sPEEK/Nafion)를 도입한 직접 메탄올 연료전지의 성능 : 바인더 함량의 영향)

  • Jung, Ho-Young;Park, Jung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.391-395
    • /
    • 2007
  • A new electrode binder mixed with sulfonated poly (ether ether ketone) (sPEEK) and Nafion is prepared and investigated as an anode binder for direct methanol fuel cell (DMFC). The mixed binder (95 wt% sPEEK/5 wt% Nafion) shows high proton conductivity and methanol transport rate as well as no dissolution and brittleness. The effect of content as an anode binder on the performance of the cell with the given cathode is investigated. The unit cell with the anode containing 10wt% mixed binder showed the highest cell performance.

Evaluation of the Performance of an Organic Thin Film Solar Cell Prepared Using the Active Layer of Poly[[9-(1-octylnonyl)-9H-carbazole-2.7-diyl]-2.5-thiophenediyl-2.1.3-benzothiadiazole-4.7-Diyl-2.5-thiophenediyl]/[6,6]-Phenyl C71 Butyric Acid Methyl Ester Composite Thin Film

  • Ochiai, Shizuyasu;Uchiyama, Masaki;Kannappan, Santhakumar;Jayaraman, Ramajothi;Shin, Paik-Kyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.43-46
    • /
    • 2012
  • Organic solar cell devices were fabricated using poly[9-(1-octylnonyl)-9H-carbazole-2.7-diyl]-2.5-thiophenediyl-2.1.3-benzothiadiazole-4.7-diyl-2.5-thiophenediyl] PCDTBT/ [6,6]-phenyl $C_{71}$ butyric acid methyl ester (PC71BM) active layer deposited by spin coating. Moreover, the relationship between solar cell performance and buffer layer thickness was investigated by spin coating speed and AFM imaging of the buffer layer surface. The performance of the organic solar cell with spin-coated active layer was then evaluated, and the power conversion efficiency of the solar cell was determined to be > 5%.