• Title/Summary/Keyword: Cell network

Search Result 2,026, Processing Time 0.033 seconds

Solution Structure of the Cytoplasmic Domain of Syndecan-3 by Two-dimensional NMR Spectroscopy

  • Yeo, In-Young;Koo, Bon-Kyung;Oh, Eok-Soo;Han, Inn-Oc;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.1013-1017
    • /
    • 2008
  • Syndecan-3 is a cell-surface heparan sulfate proteoglycan, which performs a variety of functions during cell adhension process. It is also a coreceptor for growth factor, mediating cell-cell and cell-matrix interaction. Syndecan-3 contains a cytoplasmic domain potentially associated with the cytoskeleton. Syndecan-3 is specifically expressed in neuron cell and has related to neuron cell differentiation and development of actin filament in cell migration. Syndecans each have a unique, central, and variable (V) region in their cytoplasmic domains. And that region of syndecan-3 may modulate the interactions of the conserved C1 regions of the cytoplasmic domains by tyrosine phosphorylation. Cytoplasmic domain of syndecan-3 has been synthesized for NMR structural studies. The solution structure of syndecan-3 cytoplasmic domain has been determined by two-dimensional NMR spectroscopy and simulated-annealing calculation. The cytoplasmic domain of the syndecan proteins has a tendency to form a dimmer conformation with a central cavity, however, that of syndecan-3 demonstrated a monomer conformation with a flexible region near C-terminus. The structural information might add knowledge about the structure-function relationships among syndecan proteins.

Co-author network for convergent research pattern analysis in stem cell sector (줄기세포분야 융합연구형태 분석을 위한 공저자 네트워크)

  • Jang, Hae-Lan
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.199-209
    • /
    • 2017
  • This study was carried out to confirm a convergent research pattern and researchers' role in stem cell sector by social network analysis. Articles were extracted from 1996 to 2012 in PubMed, 515 authors of 270 embryonic stem cell and induced pluripotent stem cell articles and 1,515 authors of 580 adult stem cell and mesenchymal stem cell articles. Degree(D) and betweenness(B) centrality was measured and co-author network was generated for researcher's role. As a result, Core researcher and Intermediary researcher was identified in co-author network. Core researcher had high D. centrality, otherwise high B. centrality or not. Intermediary researcher for convergent research had high B. centrality and low D. centrality. Conclusively, co-author network will be used as objective data not only to find core researchers in subject area for improving achievement but also to select experts for research project evaluation.

Neural Network Method for Efficient channel Assignment of Cellular Mobile Radio Network (셀룰러 이동 통신망의 효율적인 채널할당을 위한 신경회로망 방식의 적용)

  • 김태선;곽성식;이종호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.10
    • /
    • pp.86-94
    • /
    • 1993
  • This paper presents the two-stage neural network method for efficient channel assignment of cellular mobile radio network. The first stage decomposes the region into non-adjacent groups of cells and the second stage assigns channels to the decomposed groups. The neural network model is tested with an experimental system of eighteen channels dedicated for nineteen hexagonal-cell region. When radom call requests of average density of 2 Erl/Cell to 8 Erl/Cell are presented, the real-time channel assignment method reduces the call-blocking rate up to 16% against the existing SCA(Static Channel Assignment) method.

  • PDF

A Study on the Electromagnetic Modeling and Network Analysis for GTEM Cell Design (GTEM 셀 설계를 위한 전자파 모델링 및 회로망 해석 기법 연구)

  • Lee, Woo-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.791-799
    • /
    • 2008
  • In this paper, the electromagnetic modeling and network analysis are proposed for design of GTEM cell operating from DC to 18 GHz. 3D electromagnetic numerical analysis models composed of the coaxial mode-converter for the feeder of GTEM cell, 5 m expanded rectangular coaxial transmission line, and the resistive termination load for current and field transmitted from the feeder are developed. Equivalent network model of feeder, transmission line, and termination load in the GTEM cell is also proposed, so the return loss of GTEM cell is calculated using S-parameters using the electromagnetic numerical analysis. To verify the proposed design method, the GTEM cell is designed, constructed and tested, with its size of $5{\times}2.5{\times}1.7\;m$ and operating frequency of $DC{\sim}18\;GHz$.

3GPP Standardization Activity for Small Cell Enhancement (3GPP 소형셀 향상 표준화 기술 동향)

  • Baek, SeungKwon;Chang, SungCheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.628-631
    • /
    • 2014
  • Recently, the proliferation of new applications, e.g., mobile TV, Internet gaming, large file transfer, and the various of user terminals, e.g., smart phones and notebooks, has dramatically increased user traffic and network load. In order to meet this traffic growth, vendors and cellular operators are working on the development of new technologies and cellular standards. Within them, small cell deployment has been heralded as one of most promising way to increase both coverage and capacity of future cellular network. Small cell technology enables to improve capacity of cellular radio network by tight cooperation between small cell and macro cell in multi-tier network where small cells are densely deployed within macro cell coverage. In this paper, we describe the deployment scenarios for cooperation between macro cell and small cells and state-of-the-art technologies related to dense small cell deployment. Then, we also provide design principles and standardization trends for small cell enhancement in 3GPP.

  • PDF

Simplified Resistor Network Calculation for Electrical and Mass Transport in Anode-Supported Planar Solid Oxide Fuel Cell (연료극지지 평판형 고체산화물 연료전지 내에서의 전기 및 물질전달에 대한 간략화된 저항 네트워크 계산)

  • Lee, Hyun-Jae;Nam, Jin-Hyun;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1740-1745
    • /
    • 2004
  • A simplified resistor network model for electrical and mass transport in anode-supported planar solid oxide fuel cell (SOFC) was constructed in order to investigate the effect of interconnect rib geometry on the cell performance. For accurate potential calculation, activation and concentration over-potentials at the electrode/electrolyte interfaces were fully considered in this calculation. When contact resistance was not considered, the optimum interconnect rib length were calculated to be $0.1{\sim}0.2$ mm for 2 mm half unit cell for given operation conditions and properties. However, with realistic contact resistance, the interconnect rib length should be increased to provide larger contact area and thus to obtain better performance.

  • PDF

Gene Expression Signatures for Compound Response in Cancers

  • He, Ningning;Yoon, Suk-Joon
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.173-180
    • /
    • 2011
  • Recent trends in generating multiple, large-scale datasets provide new challenges to manipulating the relationship of different types of components, such as gene expression and drug response data. Integrative analysis of compound response and gene expression datasets generates an opportunity to capture the possible mechanism of compounds by using signature genes on diverse types of cancer cell lines. Here, we integrated datasets of compound response and gene expression profiles on NCI60 cell lines and constructed a network, revealing the relationship for 801 compounds and 341 gene probes. As examples, obtusol, which shows an exclusive sensitivity on a small number of colon cell lines, is related to a set of gene probes that have unique overexpression in colon cell lines. We also found that the SLC7A11 gene, a direct target of miR-26b, might be a key element in understanding the action of many diverse classes of anticancer compounds. We demonstrated that this network might be useful for studying the mechanisms of varied compound response on diverse cancer cell lines.

VLSI Design of High Speed Digital Neural Network using the Binary Convolution (Binar Convolution을 이용한 고속 디지탈 신경회로망의 VLSI 설계)

  • Choi, Seung-Ho;Kim, Young-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.13-20
    • /
    • 1996
  • Recently, for implementation of neural networks extensive studies have been done especially VLSI technology has been regarded as the one of the most attractive means to implement neural networks. The main drawbacks of digital VLSI implementations are their large area and slow processing speed. In this paper to solve the speed and size problems we designed the efficient architecture using the binary convolution method for basic operation of neural cell, multiplication and addition. When it is used for implementing 3-layer network with 16 neural cell per layer that used neural cell based on binary convolution, clock of 50MHz and 26MCPS on 0.8${\mu}$ standard cell library has been achieved.

  • PDF

Isolation of Schwann Cell and Separation of Schwann Cell-Neuron Network from Mouse Embryo (마우스 배아에서 슈반세포-뉴런 네트워크의 분리와 슈반세포의 분리)

  • Kweon, Tae-Dong;Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.943-945
    • /
    • 2013
  • The study of Schwann cell myelination has been facilitated by the availability to isolate and establish pure population of primary Schwann cells. Dorsal root ganglia (DRG) of mouse embryo as source of Schwann cells were used in this study. This method includes three steps: first step of dissociation of the embryonic DRG, second step of expansion of Schwann cell precursors, followed by mechanical separation of the Schwann cell-neuronal network from the underlying fibroblasts, and third step of purification of Schwann cells from the associated neurons and subsequent expansion of the purified Schwann cells. We made a highly purified population of Schwann cells and Schwann cell-neuron networks in a short period using this procedure.

  • PDF

Trends in 5G Small Cell and Application Technology (5G 스몰셀 기술 및 활용 기술 동향)

  • Kwon, D.S.;Na, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.2
    • /
    • pp.83-95
    • /
    • 2022
  • 5G goes beyond people to serve indoor and outdoor companies and industries, as well as campuses such as halls, industrial complexes, educational institutions, stadiums, dense urban areas, rural areas, and government institutions. Therefore, a new approach to small cells is needed. Accordingly, 3GPP and Small Cell Forum are researching 5G small cell architecture; 3GPP, Small Cell Forum, and 5G Alliance for Connected Industries and Automation are also researching private networks tailored to meet the specific requirements of various companies and local governments. In particular, in the UK, a small cell-based technology is required for realizing the Joint Operator Technical Specifications-Neutral Host In-Building specification to cost-effectively secure indoor coverage. Further, the research on the SON(Self-Organizing Network) technology for small cells in 5G, where commercialization has begun, is required. The 5G-based small cell structure, private network, and Neutral Host In-Building and SON reviewed in this study are at the initial research stages; therefore, additional research is needed to secure the competitiveness of the small cell technology in 5G and Beyond 5G.