• 제목/요약/키워드: Cell line enrichment analysis

검색결과 8건 처리시간 0.024초

Enrichment Strategies for Identification and Characterization of Phosphoproteome

  • Lee, Sun Young;Kang, Dukjin;Hong, Jongki
    • Mass Spectrometry Letters
    • /
    • 제6권2호
    • /
    • pp.31-37
    • /
    • 2015
  • Phosphorylation upon protein is well known to a key regulator that implicates in modulating many cellular processes like growth, migration, and differentiation. Up to date, grafting of multidimensional separation techniques onto advanced mass spectrometry (MS) has emerged as a promising tool for figuring out the biological functions of phosphorylation in a cell. However, advanced MS-based phosphoproteomics is still challenging, due to its intrinsic issues, i.e., low stoichiometry, less susceptibility in positive ion mode, and low abundance in biological sample. To overcome these bottlenecks, diverse techniques (e.g., SCX, HILIC, ERLIC, IMAC, TiO2, etc.) are continuously developed for on-/off-line enrichment of phosphorylated protein (or peptide) from biological samples, thereby helping qualitative/quantitative determination of phosphorylated protein and its phosphorylated sites. In this review, we introduce to the overall views of enrichment tools that are universally used to selectively isolate targeted phosphorylated protein (or peptide) from ordinary ones before MS-based phospoproteomic analysis.

Somatic mutation patterns and compound response in cancers

  • He, Ningning;Kim, Nayoung;Yoon, Sukjoon
    • BMB Reports
    • /
    • 제46권2호
    • /
    • pp.97-102
    • /
    • 2013
  • The use of various cancer cell lines can recapitulate known tumor-associated mutations and genetically define cancer subsets. This approach also enables comparative surveys of associations between cancer mutations and drug responses. Here, we analyzed the effects of ~40,000 compounds on cancer cell lines that showed diverse mutation-dependent sensitivity profiles. Over 1,000 compounds exhibited unique sensitivity on cell lines with specific mutational genotypes, and these compounds were clustered into six different classes of mutation-oriented sensitivity. The present analysis provides new insights into the relationship between somatic mutations and selectivity response of chemicals, and these results should have applications related to predicting and optimizing thera-peutic windows for anti-cancer agents.

Identification and Functional Analysis of Differentially Expressed Genes Related to Metastatic Osteosarcoma

  • Niu, Feng;Zhao, Song;Xu, Chang-Yan;Chen, Lin;Ye, Long;Bi, Gui-Bin;Tian, Gang;Gong, Ping;Nie, Tian-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10797-10801
    • /
    • 2015
  • Background: To explore the molecular mechanisms of metastatic osteosarcoma (OS) by using the microarray expression profiles of metastatic and non-metastatic OS samples. Materials and Methods: The gene expression profile GSE37552 was downloaded from Gene Expression Omnibus database, including 2 human metastatic OS cell line models and 2 two non-metastatic OS cell line models. The differentially expressed genes (DEGs) were identified by Multtest package in R language. In addition, functional enrichment analysis of the DEGs was performed by WebGestalt, and the protein-protein interaction (PPI) networks were constructed by Hitpredict, then the signal pathways of the genes involved in the networks were performed by Kyoto Encyclopaedia of Genes and Genomes (KEGG) automatic annotation server (KAAS). Results: A total of 237 genes were classified as DEGs in metastatic OS. The most significant up- and down-regulated genes were A2M (alpha-2-macroglobulin) and BCAN (brevican). The DEGs were significantly related to the response to hormone stimulus, and the PPI network of A2M contained IL1B (interleukin), LRP1 (low-density lipoprotein receptor-related protein 1) and PDGF (platelet-derived growth factor). Furthermore, the MAPK signaling pathway and focal adhesion were significantly enriched. Conclusions: A2M and its interactive proteins, such as IL1B, LRP1 and PDGF may be candidate target molecules to monitor, diagnose and treat metastatic OS. The response to hormone stimulus, MAPK signaling pathway and focal adhesion may play important roles in metastatic OS.

형개 추출물의 시스템 약리학적 분석과 비소세포폐암세포에 대한 증식 억제효과 (Systems Pharmacological Approach to Identification of Schizonepeta teunifolia Extract via Active Ingredients Analysis and Cytotoxicity Effect on A549 Cell Lines)

  • 양가람;추지은;김윤숙;안원근
    • Korean Journal of Acupuncture
    • /
    • 제41권1호
    • /
    • pp.7-15
    • /
    • 2024
  • Objectives : This study aimed to predict the effectiveness and potential of Schizonepeta tenuifolia as an anticancer treatment for non-small cell lung cancer through network-based pharmacology and cellular experiment. Methods : To identify the major bioactive compounds in Schizonepeta tenuifolia, we used the Traditional Chinese Medicine Systems. The target genes for the cancer treatment were selected using the UniProt database and the networked using Cytoscape. We performed functional enrichment analysis based on the Gene Ontology Biological Process and Kyoto Encyclopedia of Genes and Genomes Pathways to predict the mechanisms. To investigate the effect of Schizonepeta tenuifolia on lung cancer cell growth, we treated A549 cells, a lung cancer cell line, with different concentrations of the drug and used the MTT assay for cell viability. Results : Research has shown that the most effective mechanism of active compounds from Schizonepeta tenuifolia is through the pathway of cancer. The results of the network pharmacology analysis indicate that Schizonepeta tenuifolia has potential medicinal value as an adjuvant in anticancer treatment. The concentration-dependent inhibition of cell viability was observed on A549 cells. Furthermore, synergistic anticancer activity with Doxorubicin was also observed. Conclusions : Through a network pharmacological approach, Schizonepeta tenuifolia was predicted to have potential as an anticancer agent, and its efficacy was experimentally demonstrated using A549 cells. These findings suggest that Schizonepeta tenuifolia is a promising candidate for future research.

Effects of gamma-aminobutyric acid and piperine on gene regulation in pig kidney epithelial cell lines

  • Shin, Juhyun;Lee, Yoon-Mi;Oh, Jeongheon;Jung, Seunghwa;Oh, Jae-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권9호
    • /
    • pp.1497-1506
    • /
    • 2020
  • Objective: Gamma-aminobutyric acid (GABA) and piperine (PIP) are both nutritional supplements with potential use in animal diets. The purpose of this study is to investigate the effect of GABA and/or PIP treatment on the gene expression pattern of a pig kidney epithelial cell line. Methods: LLCPK1 cells were treated with GABA, PIP, or both, and then the gene expression pattern was analyzed using microarray. Gene ontology analysis was done using GeneOntology (Geneontology.org), and validation was performed using quantitative real-time polymerase chain reaction. Results: Gene ontology enrichment analysis was used to identify key pathway(s) of genes whose expression levels were regulated by these treatments. Microarray results showed that GABA had a positive effect on the transcription of genes related to regulation of erythrocyte differentiation and that GABA and PIP in combination had a synergistic effect on genes related to immune systems and processes. Furthermore, we found that effects of GABA and/or PIP on these selected genes were controlled by JNK/p38 MAPK pathway. Conclusion: These results can improve our understanding of mechanisms involved in the effect of GABA and/or PIP treatment on pig kidney epithelial cells. They can also help us evaluate their potential as a clinical diagnosis and treatment.

Regulation of glucose and glutamine metabolism to overcome cisplatin resistance in intrahepatic cholangiocarcinoma

  • So Mi Yang;Jueun Kim;Ji-Yeon Lee;Jung-Shin Lee;Ji Min Lee
    • BMB Reports
    • /
    • 제56권11호
    • /
    • pp.600-605
    • /
    • 2023
  • Intrahepatic cholangiocarcinoma (ICC) is a bile duct cancer and a rare malignant tumor with a poor prognosis owing to the lack of an early diagnosis and resistance to conventional chemotherapy. A combination of gemcitabine and cisplatin is the typically attempted first-line treatment approach. However, the underlying mechanism of resistance to chemotherapy is poorly understood. We addressed this by studying dynamics in the human ICC SCK cell line. Here, we report that the regulation of glucose and glutamine metabolism was a key factor in overcoming cisplatin resistance in SCK cells. RNA sequencing analysis revealed a high enrichment cell cycle-related gene set score in cisplatin-resistant SCK (SCK-R) cells compared to parental SCK (SCK WT) cells. Cell cycle progression correlates with increased nutrient requirement and cancer proliferation or metastasis. Commonly, cancer cells are dependent upon glucose and glutamine availability for survival and proliferation. Indeed, we observed the increased expression of GLUT (glucose transporter), ASCT2 (glutamine transporter), and cancer progression markers in SCK-R cells. Thus, we inhibited enhanced metabolic reprogramming in SCK-R cells through nutrient starvation. SCK-R cells were sensitized to cisplatin, especially under glucose starvation. Glutaminase-1 (GLS1), which is a mitochondrial enzyme involved in tumorigenesis and progression in cancer cells, was upregulated in SCK-R cells. Targeting GLS1 with the GLS1 inhibitor CB-839 (telaglenastat) effectively reduced the expression of cancer progression markers. Taken together, our study results suggest that a combination of GLUT inhibition, which mimics glucose starvation, and GLS1 inhibition could be a therapeutic strategy to increase the chemosensitivity of ICC.

Comparative analysis of commonly used peak calling programs for ChIP-Seq analysis

  • Jeon, Hyeongrin;Lee, Hyunji;Kang, Byunghee;Jang, Insoon;Roh, Tae-Young
    • Genomics & Informatics
    • /
    • 제18권4호
    • /
    • pp.42.1-42.9
    • /
    • 2020
  • Chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-Seq) is a powerful technology to profile the location of proteins of interest on a whole-genome scale. To identify the enrichment location of proteins, many programs and algorithms have been proposed. However, none of the commonly used peak calling programs could accurately explain the binding features of target proteins detected by ChIP-Seq. Here, publicly available data on 12 histone modifications, including H3K4ac/me1/me2/me3, H3K9ac/me3, H3K27ac/me3, H3K36me3, H3K56ac, and H3K79me1/me2, generated from a human embryonic stem cell line (H1), were profiled with five peak callers (CisGenome, MACS1, MACS2, PeakSeq, and SISSRs). The performance of the peak calling programs was compared in terms of reproducibility between replicates, examination of enriched regions to variable sequencing depths, the specificity-to-noise signal, and sensitivity of peak prediction. There were no major differences among peak callers when analyzing point source histone modifications. The peak calling results from histone modifications with low fidelity, such as H3K4ac, H3K56ac, and H3K79me1/me2, showed low performance in all parameters, which indicates that their peak positions might not be located accurately. Our comparative results could provide a helpful guide to choose a suitable peak calling program for specific histone modifications.

Does supplementing laying hen diets with a herb mixture mitigate the negative impacts of excessive inclusion of extruded flaxseed?

  • Hossein Hosseini;Noah Esmaeili;Aref Sepehr;Mahyar Zare;Artur Rombenso;Raied Badierah;Elrashdy M. Redwan
    • Animal Bioscience
    • /
    • 제36권4호
    • /
    • pp.629-641
    • /
    • 2023
  • Objective: This study investigated the effects of extruded flaxseed with and without herbs mixture on egg performance, yolk fatty acids (FAs), lipid components, blood biochemistry, serological enzymes, antioxidants, and immune system of Hy-Line W-36 hens for nine weeks. Methods: Two hundred forty laying hens were randomly distributed to eight treatments, resulting in six replicates with five hens. Graded levels of dietary extruded flaxseed (0, 90, 180, and 270 g/kg) with and without herbs mixture (24 g/kg: garlic, ginger, green tea, and turmeric 6 g/kg each) were designed as treatments. Results: The two-way analysis of variance indicated that hens fed herbs mixture had a higher value of egg production, yolk high-density lipoprotein (HDL), superoxide dismutase, glutathione peroxidase, and white blood cell and lower contents of yolk cholesterol, glucose, and blood low-density lipoprotein than those fed diets without herb mixtures (p<0.05). The Flx27 (270 g/kg flaxseed) (153.5 g/kg n-3 FAs) and Flx27+H (270 g/kg flaxseed plus 24 g/kg herbs mixture) (150.5 g/kg n-3 FAs) groups were the most promising treatments in terms of yolk n-3 FAs content. In-teraction effect (herbs- flaxseed) for blood cholesterol, HDL, malondialdehyde, glutaredoxin, alanine transaminase, (ALT), aspartate transaminase (AST), haemoglobin and immune parameters was significant (p<0.05). The results showed layers fed herbs mixture (Flx9+H, Flx18+H, and Flx27+H) had a better value of total antibody, immunoglobulin M, immunoglobulin G, ALT, AST, and blood HDL as compared with representative flaxseed levels without herbs. Conclusion: High inclusion levels of extruded flaxseed (270 g/kg) without herbs to enrich eggs with n-3 appears to impair the antioxidant system, immunohematological parameters, and sero-logical enzymes. Interestingly, the herbs mixture supplementation corrected those effects. Therefore, feeding layers with flaxseed-rich diets (270 g/kg) and herbs mixture can be a promising strategy to enrich eggs with n-3 FAs.