• 제목/요약/키워드: Cell growth

검색결과 8,812건 처리시간 0.034초

Methylglyoxal 이 Scenedesmus quadricauda 의 성장 역학에 미치는 영향 (Effects of Methylglyoxal on the Growth Dynamics of Secenedesmus quadricauda)

  • Rhie, Ki-Tae
    • The Korean Journal of Ecology
    • /
    • 제18권1호
    • /
    • pp.17-30
    • /
    • 1995
  • The growth of Scenedesmus quadricauda (Trup.) Breb. is enhanced by methylyoxal (MG), a general inhibitor of cell division, at threshold concentration in conjunction with reatment timing relative to growth stage. The stimulatory effect of MG on algal cell growth was most significant with 2.27-fold of untreated algal culture in cell number when 0.5 mM of MG was added to the algal culture at the beginning of logarithmic phase with an initial MG concentration of 0.535 mg $MG/10^6cell$. A Specific growth rates (SGRs) of MG-treated cultures were rapidly increased at the beginning of logarithmic phase with 1.89-fold of untreated algal culture. Cultures inoculated with high cell numbers of 2.4 to 4.8 X $10^4$ cells/ml were less sensitive to 0.5 mM of MG treatment. The algal cell division was ranged from 0.392 to 0.924 mg MG/106 cell. If the cell number of an algal culture at the time of inoculation was low (0.6 X $10^4$ cells/ml) and MG was added before logarithmic phase, the cell number of 0.5 mM of MG-treated cultures were lower than those of controls. In algal cultures treated with high concentrations of MG (1.0 mM and 2.0 mM), the algal growth was inhibited. Photosynthetic rate of growth-enhanced algal by 0.5 mM of MG was significantly higher than that of untreated or 1.0 mM of MG-treated algal cell, while there was no significant difference among those groups in respiratory rate. Pyruvate concentration in 0.5 mM of MG-treated culture was incrcased agter methylglyoxal trcatment.

  • PDF

고농도 비타민 C첨가가 연골 초대배양세포의 증식에 미치는 영향 (The Effect of High Concentration of Ascorbic Acid on the Growth of Primary Cultured Cells of Chondrocytes)

  • 김미향
    • 한국식품영양과학회지
    • /
    • 제33권5호
    • /
    • pp.797-802
    • /
    • 2004
  • L-Ascorbic acid (AsA), commonly known as vitamin C, which is one of the antioxidant vitamins, plays a role in cellular oxidant quenching. Some of the biochemical reactions in which it takes part have been traced through organ culture technique. But in cell cultured system, views on stimulatory and inhibitory action of AsA on cell growth are conflicting. Therefore, this study aimed to clarify the inhibitory action of high concentration AsA on the cell growth in Primary chondrocyte isolated from rat ribs. Cells were exposed to ascorbate at various concentrations. Supplement of AsA induced stimulation of cell growth in primary cultured cells of chondrocytes. Most remarkable stimulation of cell growth by AsA was found in primary cultured chondrocytes. However, it showed that they were dead in the medium which contained AsA at the concentration higher than 1.0 mM. This lethal effect of AsA causing the cell death was inhibited by the addition of catalase in the medium. This supposed that hydroxyl radical (ㆍOH) induced from $H_2O$$_2$ was actively cytotoxic agent. Based on the results, when AsA was added in medium at normal concentrations, the cell growth was stimulated by inducing the formation of extracellular matrix. On the contrary, if added in medium at excess concentrations, the cell growth was inhibited because $H_2O$$_2$ were generated from AsA in medium. Therefore, addition of AsA at the normal concentrations stimulates cell growth, but excess concentrations of AsA induces cell death.

Production of Ginkgolides and Bilobalide from Optimized the Ginkgo biloba Cell Culture

  • Park, Young-Goo;Kim, Su-Jung;Kang, Young-Min;Jung, Hee-Young;D. Theertha Prasad;Kim, Sun-Won;Chung, Young-Gwan;Park, Myung-Suk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권1호
    • /
    • pp.41-46
    • /
    • 2004
  • The influence of various culture conditions on growth and ginkgolides (GKA and GKB), and bilobalide formation in callus and suspension cultures of Ginkgo biloba were investigated. Callus induced from the leaf petioles exhibited distinct morphological and physiological responses. The cell biomass and ginkgolides content varied among the cell lines; brownish callus lines produced high levels of ginkgolides and bilobalide in spite of poor cell growth. Among the culture media used, MS medium showed significant effect on cell growth and ginkgolides production. Low concentration of sucrose (3%) improved cell growth, while higher sucrose levels (5 and 7%) improved ginkgolides production. Cultivation of callus cultures above 28$^{\circ}C$ dramatically reduced their growth rate; however the cell lines grown at 36$^{\circ}C$ showed increased levels of bilobalide content. A 2.5-L balloon type bubble bioreactor (BTBB) was successfully developed for the cell growth and ginkgolides production.

Berberine Production by Cell Suspension Cultures of Cork Tree (Phellodendron amurense Rupr)

  • Choi, Myung-Suk;Shin, Dong-Ill;Park, Young-Goo
    • 생약학회지
    • /
    • 제27권1호
    • /
    • pp.32-36
    • /
    • 1996
  • Various culture conditions for cell growth and berberine production in cork tree (Phellodendron amurense Rupr.) were investigated. Callus was induced from cambium tissue of cork tree, and cultured on LS liquid medium supplemented with 0.5 mg/1 2,4-D, 0.1mg/1 BA, and 3% sucrose. Several factors enhancing berberine production and cell growth in cork tree cell cultures were found. Some of them enhanced both cell growth and berberine production, but others resulted in a decoupling of cell growth and berberine production with significant in the specific levels. High level of nitrate (80mM), high level of phosphate (8.98mM), and sucrose (7%), 1.0mg/l IAA were effective in berberine production, whereas low level of nitrate (40mM), and phosphate (2.25mM), and high level of sucrose (7%) in the medium were effective in cell growth. Two stage culture(first stage for cell growth, and second stage for berberine production) increased berberine production almost twice (5.06mg/g dry weight) as much as single stage cultures in berberine production.

  • PDF

Overexpression of TTRAP inhibits cell growth and induces apoptosis in osteosarcoma cells

  • Zhou, Caihong;Shen, Qi;Xue, Jinglun;Ji, Chaoneng;Chen, Jinzhong
    • BMB Reports
    • /
    • 제46권2호
    • /
    • pp.113-118
    • /
    • 2013
  • TTRAP is a multi-functional protein that is involved in multiple aspects of cellular functions including cell proliferation, apoptosis and the repair of DNA damage. Here, we demonstrated that the lentivirus-mediated overexpression of TTRAP significantly inhibited cell growth and induced apoptosis in osteosarcoma cells. The ectopic TTRAP suppressed the growth and colony formation capacity of two osteosarcoma cell lines, U2OS and Saos-2. Cell apoptosis was induced in U2OS cells and the cell cycle was arrested at G2/M phase in Saos-2 cells. Exogenous expression of TTRAP in serum-starved U2OS and Saos-2 cells induced an increase in caspase-3/-7 activity and a decrease in cyclin B1 expression. In comparison with wild-type TTRAP, mutations in the 5'-tyrosyl-DNA phosphodiesterase activity of TTRAP, in particular $TTRAP^{E152A}$, showed decreased inhibitory activity on cell growth. These results may aid in clarifying the physiological functions of TTRAP, especially its roles in the regulation of cell growth and tumorigenesis.

Cultivation of the Hyperthermophilic Archaeon Sulfolobus solfataricus in Low-Salt Media

  • Park, Chan-Beum;Lee, Sun-Bok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제4권1호
    • /
    • pp.21-25
    • /
    • 1999
  • Two low-salt complex media, bactopeptone and desalted yeast extract, were used for high density cultivation of the hyperthermophilic archaeon Sulfolobus solfataricus (DSM 1617). Bactopeptone, which has low mineral ion content among various complex media, was good for cell growth in batch cultures; the maximal cell density in bactopeptone was comparable to that in yeast extract. However, cell growth was rather poor when bactopeptone was added by the fed-batch procedure. Since several vitamins are deficient in abctopeptone, the effect of vitamins on cell growth was examined. Among the vitamins tested, pyridoxine was found to improve the growth rate of S. solfataricus. To reduce the growth inhibition caused by mineral ions, yeast extract was dialyzed against distilled water and then fed-batch cultures were carried out using a fed medium containing desalted yeast extract. Although the concentrations of mineral ions in yeast extract were significantly lowered by the dialysis whether low molecular weight solutes in yest extract are crucial for cell growth, we investigated the effect of trehalose, a most abundant compatible solute in yeast extract, on the growth pattern. Cell densities were increased and the length of the lag phase was markedly shortened by the presence of trehalose, indicating that trehalose plays an important role in the growth of S. solfataricus.

  • PDF

산-생장설에 대한 최근 연구 동향 (Recent research progress on acid-growth theory)

  • 이상호
    • Journal of Plant Biotechnology
    • /
    • 제43권4호
    • /
    • pp.405-410
    • /
    • 2016
  • Auxins are essential in plant growth and development. The auxin-stimulated elongation of plant cells has been explained by the "acid-growth theory", which was proposed forty years ago. According to this theory, the auxin activates plasma membrane $H^+-ATPase$ to induce proton extrusion into the apoplast, promoting cell expansion through the activation of cell wall-loosening proteins such as expansins. Even though accepted as the classical theory of auxin-induced cell growth for decades, the major signaling components comprising this model were unknown, until publication of recent reports. The major gap in the acid growth theory is the signaling mechanism by which auxin activates the plasma membrane $H^+-ATPase$. Recent genetic, molecular, and biochemical approaches reveal that several auxin-related molecules, such as TIR1/AFB AUX/IAA coreceptors and SMALL AUXIN UP RNA (SAUR), serve as important components of the acid-growth model, phosphorylating and subsequently activating the plasma membrane $H^+-ATPase$. These researches reestablish the four-decade-old theory by providing us the detailed signaling mechanism of auxininduced cell growth. In this review, we discuss the recent research progress in auxin-induced cell elongation, and a set of possible future works based on the reestablished acid-growth model.

Mediation of Intracellular $Ca^{2+}$ in the Phospholipase $A_2-induced$ Cell Proliferation in Human Neuroblastoma Cells

  • Kim, Jung-Ae;Lee, Yong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권4호
    • /
    • pp.411-417
    • /
    • 1998
  • The role of phospholipase ($A_2\;PLA_2$) in tumor cell growth was investigated using SK-N-MC human neuroblastoma cells. 4-Bromophenacyl bromide (BPB) and mepacrine (Mep), known $PLA_2$ inhibitors, suppressed growth of the tumor cells in a dose-dependent manner without a significant cytotoxicity. Melittin (Mel), a $PLA_2$ activator, enhanced the cell growth in a concentration-dependent fashion. The growth-enhancing effects of Mel were significantly reversed by the co-treatment with $PLA_2$ inhibitors. In addition, Mel induced intracellular $Ca^{2+}$ release from internal stores like as did serum, a known intracellular $Ca^{2+}$ agonist in the tumor cells. Intracellular $Ca^{2+}$ release induced by these agonists was significantly blocked by $PLA_2$ inhibitors at growth-inhibitory concentrations. Arachidonic acid (AA), a product of the $PLA_2-catalyzed$ reaction, induced cell growth enhancement and intracellular $Ca^{2+}$ release. These effects of AA were significantly blocked by BAPTA/AM, an intracellular $Ca^{2+}$ chelator. Taken together, these results suggest that the modulation of $PLA_2$ activity may be one of the regulatory mechanisms of cell growth in human neuroblastoma cells. Intracellular $Ca^{2+}$ may act as a key mediator in the $PLA_2-induced$ growth regulation.

  • PDF

Function of hepatocyte growth factor in gastric cancer proliferation and invasion

  • Koh, Sung Ae;Lee, Kyung Hee
    • Journal of Yeungnam Medical Science
    • /
    • 제37권2호
    • /
    • pp.73-78
    • /
    • 2020
  • Cancer incidence has been increasing steadily and is the leading cause of mortality worldwide. Gastric cancer is still most common malignancy in Korea. Cancer initiation and progression are multistep processes involving various growth factors and their ligands. Among these growth factors, we have studied hepatocyte growth factor (HGF), which is associated with cell proliferation and invasion, leading to cancer and metastasis, especially in gastric cancer. We explored the intercellular communication between HGF and other surface membrane receptors in gastric cancer cell lines. Using complimentary deoxyribonucleic acid microarray technology, we found new genes associated with HGF in the stomach cancer cell lines, NUGC-3 and MKN-28, and identified their function within the HGF pathway. The HGF/N-methyl-N'-nitroso-guanidine human osteosarcoma transforming gene (c-MET) axis interacts with several molecules including E-cadherin, urokinase plasminogen activator, KiSS-1, Jun B, and lipocalin-2. This pathway may affect cell invasion and metastasis or cell apoptosis and is therefore associated with tumorigenesis and metastasis in gastric cancer.

두경부암 세포주에서 상피성장인자수용체 타이로신 카이네이즈 억제제인 gefitinib의 성장억제에 관한 연구 (Growth inhibition in head and neck cancer cell lines by gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor)

  • 송승일;김명진
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제35권5호
    • /
    • pp.287-293
    • /
    • 2009
  • Cell survival is the result of a balance between programmed cell death and cellular proliferation. Cell membrane receptors and their associated signal transducing proteins control these processes. Of the numerous receptors and signaling proteins, epidermal growth factor receptor (EGFR) is one of the most important receptors involved in signaling pathways implicated in the proliferation and survival of cancer cells. EGFR is often highly expressed in human tumors including oral squamous cell carcinomas, and there is increasing evidence that high expression of EGFR is correlated with poor clinical outcome of common human cancers. Therefore, we examined the antiproliferative activity of gefitinib, epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in head and neck cancer cell lines. SCC-9, KB cells were cultured and growth inhibition activity of gefitinib was measured with MTT assay. To study influence of gefitinib in cell cycle, we performed cell cycle analysis with flow cytometry. Western blot was done to elucidate the expression of EGFR in cell lines and phosphorylation of EGFR and downstream kinase protein, Erk and Akt. Significant growth inhibition was observed in SCC-9 cells in contrast with KB cells. Also, flow cytometric analysis showed G1 phase arrest only in SCC-9 cells. In Western blot analysis for investigation of EGFR expression and downstream molecule phosphorylation, gefitinib suppressed phosphorylation of EGFR and downstream protein kinase Erk, Akt in SCC-9. However, in EGFR positive KB cells, weak expression of active form of Erk and Akt and no inhibitory activity of phosphorylation in Erk and Akt was observed. The antiproliferative activity of gefitinib was not correlated with EGFR expression and some possibility of phosphorylation of Erk and Akt as a predictive factor of gefitinib response was emerged. Further investigations on more reliable predictive factor indicating gefitinib response are awaited to be useful gefitinib treatment in head and neck cancer patients.