• Title/Summary/Keyword: Cell electrolyte leakage

Search Result 42, Processing Time 0.029 seconds

Preparation and Characterization of Ionic Liquid-based Electrodes for High Temperature Fuel Cells Using Cyclic Voltammetry

  • Ryu, Sung-Kwan;Choi, Young-Woo;Kim, Chang-Soo;Yang, Tae-Hyun;Kim, Han-Sung;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.30-38
    • /
    • 2013
  • In this study, a catalyst slurry was prepared with a Pt/C catalyst, Nafion ionomer solution as a binder, an ionic liquid (IL) (1-butyl-3-methylimidazolium tetrafluoroborate), deionized water and ethanol as a solvent for the application to polymer electrolyte fuel cells (PEFCs) at high-temperatures. The effect of the IL in the electrode of each design was investigated by performing a cyclic voltammetry (CV) measurement. Electrodes with different IL distributions inside and on the surface of the catalyst electrode were examined. During the CV test, the electrochemical surface area (ESA) obtained for the Pt/C electrode without ILs gradually decreased owing to three mechanisms: Pt dissolution/redeposition, carbon corrosion, and place exchange. As the IL content increased in the electrode, an ESA decrement was observed because ILs leaked from the Nafion polymer in the electrode. In addition, the CVs under conditions simulating leakage of ILs from the electrode and electrolyte were evaluated. When the ILs leaked from the electrode, minor significant changes in the CV were observed. On the other hand, when the leakage of ILs originated from the electrolyte, the CVs showed different features. It was also observed that the ESA decreased significantly. Thus, leakage of ILs from the polymer electrolyte caused a performance loss for the PEFCs by reducing the ESA. As a result, greater entrapment stability of ILs in the polymer matrix is needed to improve electrode performance.

Characteristics of hydrogen adsorption peaks of electrodes containing ionic liquid for high temperature polymer electrolyte fuel cells (고온 연료전지용 이온성 액체를 함유한 전극의 수소 흡착피크의 특성)

  • Ryu, Sung-Kwan;Park, Jin-Soo;Yang, Tae-Hyun;Park, Seung-Hee;Park, S.H.;Yoon, Y.G.;Kim, Han-Sung;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.382-382
    • /
    • 2009
  • In this study, we prepared electrodes containing ionic liquid for high temperature polymer electrolyte fuel cells. Effects of ILs on electrochemical properties of the electrodes were investigated carrying out measurement of cyclic voltammograms of the various electrodes with the content of IL in a strong supporting electrolyte. As the ILs content increased in electrodes, electrochemical surface area(ESA) decreased due to the leakage of ILs from Nafion ionomer. In addition, two case of cyclic voltammograms under two simulated environment, i.e. IL leakage from Nafion ionomer in I) electrode and ii) polymer electrolyte, were investigated. As a result, IL leakage from polymer electrolyte showed worse results in electrochemical properties of the electrode.

  • PDF

Electrochemical properties of metal salts polymer electrolyte for DSSC (금속염을 이용한 염료감응 태양전지의 고체전해질의 전기화학적 특성)

  • Zhao, Xing Guan;Jin, En Mei;Gu, Hal-Bon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.55.1-55.1
    • /
    • 2011
  • Dye-sensitized solar cell(DSSC) have been considered one of the promising alternatives to conventional solar cells, because of their low cost, easy fabrication and relatively high energy conversion efficiency. However, although the cell offers reasonable efficiency at least 11%, the use of a liquid electrolyte placed technological challenges for achieving the desired durability and operational stability of the cell. In order to prevent or reduce electrolyte leakage considerable efforts have been made, such as p-type semiconductor or organic hole-transport material that better mechanical properties and simple fabrication processes. In this work, we synthesized solid-state electrolyte containing LiI and KI metal salt with starting materials of poly ethylene oxide to substitute liquid electrolyte enhance the ionic conductivity and solar conversion efficiency. Li+ leads to faster diffusion and higher efficiency and K+ leading to higher ionic conductivity. The efficiency of poly ethylene oxide/LiI system electrolyte is 1.47% and poly ethylene oxide/potassium electrolyte is 1.21%. An efficiency of 3.24% is achieved using solid-state electrolyte containing LiI and KI concentrations. The increased solar conversion efficiency is attributed to decreased crystallinity in the polymer that leads to enhanced charge transfer.

  • PDF

Fabrication Of Thin Electrolyte Layer For Solid Oxide Fuel Cell by Vacuum Slurry Dip-coating Process (진공 슬러리 담금 코팅 공정에 의한 고체 산화물 연료전지용 박막 전해질막 제조에 관한 연구)

  • Son, Hui-Jeong;Lim, Tak-Hyoung;Lee, Seung-Bok;Shin, Dong-Tyul;Song, Rak-Hyun;Kim, Sung-Hyun
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.2
    • /
    • pp.204-211
    • /
    • 2006
  • The electrolyte in the solid oxide fuel cell must be dense enough to avoid gas leakage and thin enough to reduce the ohmic resistance. In order to manufacture the thin and dense electrolyte layer, 8 mol% $Y_2O_3$ stabilized-$ZrO_2$ (8YSZ) electrolyte layers were coated on the porous tubular substrate by the novel vacuum slurry dip-coating process. The effects of the slurry concentration, presintering temperature, and vacuum pressure on the thickness and the gas permeability of the coated electrolyte layers have been examined in the vacuum slurry coating process. The vacuum-coated electrolyte layers showed very low gas permeabilities and had thin thicknesses. The single cell with the vacuum-coated electrolyte layer indicated a good performance of $495\;mW/cm^2$, 0.7 V at $700^{\circ}C$. The experimental results show that the vacuum dip-coating process is an effective method to fabricate dense thin film on the porous tubular substrate.

Cell Viability and Antioxidant Enzyme Activity in the Cell of Ginseng (Panax ginseng C.A. Meyer) Treated with Soil Extracts (인삼재배지의 토양추출물이 종자 발아와 세포의 항산화효소 활성에 미치는 영향)

  • Ryu, Tae-Seok;Kwon, Soon-Tae
    • Korean Journal of Plant Resources
    • /
    • v.21 no.4
    • /
    • pp.324-328
    • /
    • 2008
  • One hundred-eighty extracts of soil collected from ginseng (Panax ginseng C.A. Meyer) fields were subjected to lettuce germination test, electrolyte leakage, cell viability and antioxidant enzyme activity test. Regardless of various cultivation periods, there was no significant difference in soil pH, the content of organic matter and available phosphate in ginseng fields. Based on lettuce seed germination test, six soil extracts showing inhibition of germination and/or seedling growth were selected for further study. Selected soil extracts markedly inhibited cell viability of ginseng cultured cells but leakage of electrolytes were not affected by the treatment. Enzyme activity of superoxide dimutase in ginseng cultured cells was not affected by the treatment with the soil extracts. However, those of peroxidase and catalase were significantly inhibited by the treatment with soil extracts which showed inhibition of lettuce seed germination and seedling growth.

Development and Evaluation of Gasket for Polymer Electrolyte Membrane Fuel Cell Stacks (고분자 전해질 연료전지 가스켓 설계 및 성능 평가)

  • Seo, Hakyu;Han, In-Su;Jung, Jeehoon;Kim, Minsung;Shin, Hyungil;Hur, Taeuk;Cho, Sungbaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.90.1-90.1
    • /
    • 2010
  • The design and fabrication of a metallic bipolar plate-gasket assembly for polymer electrolyte fuel cells (PEMFCs) is defined. This bipolar plate-gasket assembly was prepared by inserting a previously prepared bipolar plate in the specially designed gasket mold. For this aim, a proprietary fluoro-silicone based rubber was injected directly into the bipolar plate borders. Gaskets obtained like this showed the chemically / physically stable and the good sealibilty in typically operating PEM fuel cell conditions. And also, this bipolar plate-gasket assembly shows lots of advantages with respect to traditional PEMFCs stack assembling systems: useful application to automative stacking due to easy handling, reduced fabrication time, possibility of quality control and failed elements substitution. This bipolar plate-gasket assembly was evaluated in the short fuel cell stack and met the leakage requirement for normal operation both in short-term and in long-term operation. Especially, it was confirmed that this gasket could be applied successfully even in the high pressure FEM fuel cell systems(over 2.0 bar in absolute pressure).

  • PDF

The Relationship among Flesh Browning, Membrane Permeability, and Fatty Acid Composition in Fuyu Persimmon Fruits (단감 과실의 과육 갈변과 세포막 투과성 및 지방산 조성 변화의 관계)

  • 최성진
    • Food Science and Preservation
    • /
    • v.5 no.1
    • /
    • pp.35-39
    • /
    • 1998
  • The cell membrane properties in relation to flesh browning of Fuyu persimmon fruits during CA storage were studied. Compared to intact fruits, the flesh tissue of browned fruits showed higher rate of electrolyte leakage, indicating incresed membrane permeability. It could be assumed that the increased membrane permeability results in 1eakage of phenolic compounds from vacuole and their oxidation by contacting with PPO, inducing finally the development of flesh browning. In addition, lower content of fatty acids and higher saturation rate of them were found in browned fruits. In conculusion, it was suggested that the inhibited fatty acid metabolism and fatty acid saturation during CA storage cause membrane Permeability to increase.

  • PDF

Numerical Study About Compression Effect of Porous Electrodes on the Performance of Redox Flow Batteries (다공성 전극의 압축률이 레독스흐름전지의 성능에 미치는 영향에 대한 수치해석적 연구)

  • Jeong, Daein;Jung, Seunghun
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • When designing a redox flow battery system, compression of battery stack is required to prevent leakage of electrolyte and to reduce contact resistance between cell components. In addition, stack compression leads to deformation of the porous carbon electrode, which results in lower porosity and smaller cross-sectional area for electrolyte flow. In this paper, we investigate the effects of electrode compression on the cell performance by applying multi-dimensional, transient model of all-vanadium redox flow battery (VRFB). Simulation result reveals that large compression leads to greater pressure drop throughout the electrodes, which requires large pumping power to circulate electrolyte while lowered ohmic resistance results in better power capability of the battery. Also, cell compression results in imbalance between anolyte and catholyte and convective crossover of vanadium ions through the separator due to large pressure difference between negative and positive electrodes. Although it is predicted that the battery power is quickly improved due to the reduced ohmic resistance, the capacity decay of the battery is accelerated in the long term operation when the battery cell is compressed. Therefore, it is important to optimize the battery performance by taking trade-off between power and capacity when designing VRFB system.

Preparation of Thin Film Electrolyte for Solid Oxide Fuel Cell by Sol-Gel Method and Its Gas Permeability (졸-겔법을 이용한 고체산화물연료전지의 전해질 박막 제조 및 가스 투과도)

  • Son, Hui-Jeong;Lee, Hye-Jong;Lim, Tak-Hyoung;Song, Rak-Hyun;Peck, Dong-Hyun;Shin, Dong-Ryul;Hyun, Sang-Hoon;Kilner, John
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.827-832
    • /
    • 2005
  • In this study, thin electrolyte layer was prepared by 8YSZ ($8mol\%$ Yttria-Stabilized Zirconia) slurry dip and sol coating onto the porous anode support in order to reduce ohmic resistance. 8YSZ polymeric sol was prepared from inorganic salt of nitrate and XRF results of xerogel powder exhibited similar results $(99.2\pm1wt\%)$ compared with standard sample (TZ-8YS, Tosoh Co.). The dense and thin YSZ film with $1{\mu}m$ thickness was synthesized by coating of 0.7M YSZ sol followed by heat-treatment at $600^{\circ}C$ for 1 h. Thin film electrolyte sintered at $1400^{\circ}C$ showed no gas leakage at the differential pressure condition of 3 atm.

A Study on Improvement of Storage Safety through Quality improvement of Torpedo Propulsion Battery (어뢰 추진전지 품질개선을 통한 저장안정성 향상에 관한 연구)

  • Jang, Min-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.291-298
    • /
    • 2019
  • We describe the improvement of insulation performance and the prevention of electrolyte leakage in a single cell in order to prevent the fuming phenomenon caused by leakage of electrolyte in a lithium secondary battery in a submerged weapon (torpedo) operated in Korea. A torpedo using lithium secondary battery as a main power source (propulsion battery) can induce the heat and fuming phenomenon, which makes it inconvenient for naval equipment operation in Korea. In the simulation test, the electrolyte of some battery cells leaked in the battery pack unit, leading to a short circuit between the main power circuit and the terminal tab of the high voltage part. We analyzed the characteristics and mechanism of the lithium secondary battery during this heat generation and fuming phenomenon. In order to prevent leakage of the electrolyte in the lithium secondary battery, the design was improved via fundamental (terminal tap enhancement) and complementary (insulation block selection and installation) measures. Comparison of the performance test before and after the improvement showed that the tensile strength of the tap terminal was improved about 2 times and the withstand voltage characteristic was improved. The application of quality improvement measures resulted in no fuming even after more than 3 years of field operation. This result is expected to improve the operation and storage stability of the torpedo propulsion cell.