• Title/Summary/Keyword: Cell cycle genes

Search Result 433, Processing Time 0.033 seconds

Notch Is Not Involved in Physioxia-Mediated Stem Cell Maintenance in Midbrain Neural Stem Cells

  • Anne Herrmann;Anne K. Meyer;Lena Braunschweig;Lisa Wagenfuehr;Franz Markert;Deborah Kolitsch;Vladimir Vukicevic;Christiane Hartmann;Marlen Siebert;Monika Ehrhart-Bornstein;Andreas Hermann;Alexander Storch
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.293-303
    • /
    • 2023
  • Background and Objectives: The physiological oxygen tension in fetal brains (~3%, physioxia) is beneficial for the maintenance of neural stem cells (NSCs). Sensitivity to oxygen varies between NSCs from different fetal brain regions, with midbrain NSCs showing selective susceptibility. Data on Hif-1𝛼/Notch regulatory interactions as well as our observations that Hif-1𝛼 and oxygen affect midbrain NSCs survival and proliferation prompted our investigations on involvement of Notch signalling in physioxia-dependent midbrain NSCs performance. Methods and Results: Here we found that physioxia (3% O2) compared to normoxia (21% O2) increased proliferation, maintained stemness by suppression of spontaneous differentiation and supported cell cycle progression. Microarray and qRT-PCR analyses identified significant changes of Notch related genes in midbrain NSCs after long-term (13 days), but not after short-term physioxia (48 hours). Consistently, inhibition of Notch signalling with DAPT increased, but its stimulation with Dll4 decreased spontaneous differentiation into neurons solely under normoxic but not under physioxic conditions. Conclusions: Notch signalling does not influence the fate decision of midbrain NSCs cultured in vitro in physioxia, where other factors like Hif-1𝛼 might be involved. Our findings on how physioxia effects in midbrain NSCs are transduced by alternative signalling might, at least in part, explain their selective susceptibility to oxygen.

Effects of an Anti-cancer Drug, Tubastatin A, on the Growth and Development of Immature Oocytes in Mice (항암제 tubastatin A에 의한 생쥐 미성숙 난모세포의 성장과 발달에 미치는 효과)

  • Choi, Yun-Jung;Min, Gyesik
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.105-111
    • /
    • 2019
  • In recent years, progress has been made in the search for the development of new anti-cancer agents by employing specific inhibitors of histone deacetylase (HDAC)-6 to block signal transduction pathways in cancer cells. This study examined the effects of tubastatin A (TubA), an HDAC-6 inhibitor, on the growth and development of immature oocytes in murine ovaries using RNA sequencing analysis. The results from a gene set enrichment analysis (GSEA) indicated that the expression of most of the gene sets involved in the cell cycle and control and progression of meiosis decreased in the TubA-treated group as compared with that in germinal vesicle (GV) stage oocytes. In addition, an ingenuity pathway analysis (IPA) suggested that TubA not only caused increased expression of p53 and pRB and decreased expression of CDK4/6 and cyclin D but also caused elevated expression of genes involved in the control of the DNA check point in G2/M stage oocytes. These results suggest that TubA may induce cell cycle arrest and apoptosis through the induction of changes in the expression of genes involved in signal transduction pathways associated with DNA damage and the cell cycle of immature oocytes in the ovary.

Mangiferin Induces Apoptosis by Regulating Bcl-2 and Bax Expression in the CNE2 Nasopharyngeal Carcinoma Cell Line

  • Pan, Li-Li;Wang, Ai-Yan;Huang, Yong-Qi;Luo, Yu;Ling, Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7065-7068
    • /
    • 2014
  • To investigate the anti-proliferative mechanism of mangiferin in a human nasopharyngeal carcinoma cell line, CNE2 cells were incubated with different concentrations of mangiferin (12.5, 25, 50, 100, 150 and $200{\mu}M$) or with PBS as a control for 72 hours. Analyses were made of the cell cycle and apoptosis with measurement of mRNA and protein levels of two apoptosis-related genes, Bcl-2 and Bax. Flow cytometry assays showed mangiferin could inhibit CNE2 cell proliferation via G2/M arrest and induction of early apoptosis. Real time PCR and Western blotting showed the mRNA and protein level of Bcl-2 to be down-regulated, while those of Bax were upregulated, when CNE2 cells were treated with mangiferin. This investigation indicated anti-proliferation effects of mangiferin through induction of cell apoptosis regulated by Bcl-2 and Bax expression.

Gene Expression Analysis of Gα13-/- Knockout Mouse Embryos Reveals Perturbations in Gα13 Signaling Related to Angiogenesis and Hypoxia

  • Park, Ji-Hwan;Choi, Sang-Dun
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.161-172
    • /
    • 2011
  • Angiogenesis is regulated by a large number of molecules and complex signaling mechanisms. The G protein $G{\alpha}_{13}$ is a part of this signaling mechanism as an endothelial cell movement regulator. Gene expression analysis of $G{\alpha}_{13}$ knockout mouse embryos was carried out to identify the role of $G{\alpha}_{13}$ in angiogenesis signaling during embryonic development. Hypoxia-inducible response factors including those acting as regulators of angiogenesis were over expressed, while genes related to the cell cycle, DNA replication, protein modification and cell-cell dissociation were under expressed. Functional annotation and network analysis indicate that $G{\alpha}_{13}{^{-/-}}$ embryonic mice were exposed to hypoxic conditions. The present analysis of the time course highlighted the significantly high levels of disorder in the development of the cardiovascular system. The data suggested that hypoxia-inducible factors including those associated with angiogenesis and abnormalities related to endothelial cell division contributed to the developmental failure of $G{\alpha}_{13}$ knockout mouse embryos.

A new cell-direct quantitative PCR based method to monitor viable genetically modified Escherichia coli

  • Yang Qin;Bo Qu;Bumkyu Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.795-807
    • /
    • 2022
  • The development and commercialization of industrial genetically modified (GM) organisms is actively progressing worldwide, highlighting an increased need for improved safety management protocols. We sought to establish an environmental monitoring method, using real-time polymerase chain reaction (PCR) and propidium monoazide (PMA) treatment to develop a quantitative detection protocol for living GM microorganisms. We developed a duplex TaqMan quantitative PCR (qPCR) assay to simultaneously detect the selectable antibiotic gene, ampicillin (AmpR), and the single-copy Escherichia coli taxon-specific gene, D-1-deoxyxylulose 5-phosphate synthase (dxs), using a direct cell suspension culture. We identified viable engineered E. coli cells by performing qPCR on PMA-treated cells. The theoretical cell density (true copy numbers) calculated from mean quantification cycle (Cq) values of PMA-qPCR showed a bias of 7.71% from the colony-forming unit (CFU), which was within ±25% of the acceptance criteria of the European Network of GMO Laboratories (ENGL). PMA-qPCR to detect AmpR and dxs was highly sensitive and was able to detect target genes from a 10,000-fold (10-4) diluted cell suspension, with a limit of detection at 95% confidence (LOD95%) of 134 viable E. coli cells. Compared to DNA-based qPCR methods, the cell suspension direct PMA-qPCR analysis provides reliable results and is a quick and accurate method to monitor living GM E. coli cells that can potentially be released into the environment.

The Role of Stem Cells and Gap Junctional Intercellular Communication in Carcinogenesis

  • Trosko, James E.
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.43-48
    • /
    • 2003
  • Understanding the process of carcinogenesis will involve both the accumulation of many scientific facts derived from molecular, biochemical, cellular, physiological, whole animal experiments and epidemiological studies, as well as from conceptual understanding as to how to order and integrate those facts. From decades of cancer research, a number of the "hallmarks of cancer" have been identified, as well as their attendant concepts, including oncogenes, tumor suppressor genes, cell cycle biochemistry, hypotheses of metastasis, angiogenesis, etc. While all these "hallmarks" are well known, two important concepts, with their associated scientific observations, have been generally ignored by many in the cancer research field. The objective of the short review is to highlight the concept of the role of human adult pluri-potent stem cells as "target cells" for the carcinogenic process and the concept of the role of gap junctional intercellular communication in the multi-stage, multi-mechanism process of carcinogenesis. With these two concepts, an attempt has been made to integrate the other well-known concepts, such as the multi-stage, multi-mechanisn or the "initiation/promotion/progression" hypothesis; the stem cell theory of carcinogenesis; the oncogene/tumor suppression theory and the mutation/epigenetic theories of carcinogenesis. This new "integrative" theory tries to explain the well-known "hallmarks" of cancers, including the observation that cancer cells lack either heterologous or homologous gap junctional intercellular communication whereas normal human adult stem cells do not have expressed or functional gap junctional intercellular communication. On the other hand, their normal differentiated, non-stem cell derivatives do express connexins and express gap junctional intercellular communication during their differentiation. Examination of the roles of chemical tumor promoters, oncogenes, connexin knock-out mice and roles of genetically-engineered tumor and normal cells with connexin and anti-sense connexin genes, respectively, seems to provide evidence which is consistent with the roles of both stem cells and gap junctional communication playing a major role in carcinogenesis. The integrative hypothesis provides new strategies for chemoprevention and chemotherapy which focuses on modulating connexin gene expression or gap junctional intercellular communication in the premalignant and malignant cells, respectively.

Adenovirus-mediated Double Suicide Gene Selectively Kills Gastric Cancer Cells

  • Luo, Xian-Run;Li, Jian-Sheng;Niu, Ying;Miao, Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.781-784
    • /
    • 2012
  • The aim of this study was to evaluate the effect of the adenovirus-mediated double suicide gene (CD/TK) for selective killing of gastric cancer cells. Gastric cancer cells SCG7901 and normal gastric epithelial cell lines were infected by adenoviruses Ad-survivin/GFP and Ad-survivin/CD/TK. GFP expression and CD-TK were detected by fluorescence microscopy and reverse transcriptase polymerase chain reaction (RT-PCR), respectively. After treatment of the infected cells with the pro-drugs ganciclovir (GCV) and/or 5-FC, the cell growth status was evaluated by methyl thiazolyl tetrazolium assay. Cell cycle changes were detected using flow cytometry. In nude mice bearing human gastric cancer, the recombinant adenovirus vector was injected directly into the tumor followed by an intraperitoneal injection of GCV and/or 5-FC. The subsequent tumor growth was then observed. The GFP gene driven by survivin could be expressed within the gastric cancer line SCG7901, but not in normal gastric epithelial cells. RT-PCR demonstrated the presence of the CD/TK gene product in the infected SCG7901 cells, but not in the infected normal gastric epithelial cells. The infected gastric cancer SCG7901, but not the gastric cells, was highly sensitive to the pro-drugs. The CD/TK fusion gene system showed significantly greater efficiency than either of the single suicide genes in killing the target cells (P<0.01). Treatment of the infected cells with the pro-drugs resulted in increased cell percentage in G0-Gl phase and decreased percentage in S phase. In nude mice bearing SCG7901 cells, treatment with the double suicide gene system significantly inhibited tumor growth, showing much stronger effects than either of the single suicide genes (P<0.01). The adenovirus-mediated CD/TK double suicide gene driven by survivin promoter combined with GCV an 5-FC treatment could be an effective therapy against experimental gastric cancer with much greater efficacy than the single suicide gene CD/TK combined with GCV or 5-FC.

A rare ginsenoside compound K (CK) induces apoptosis for breast cancer cells

  • Seun Eui Kim;Myoung-Hoon Lee;Hye-Myoung Jang;Wan-Taek Im;Joontaik Lee;Sang-Hwan Kim;Gwang Joo Jeon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.167-176
    • /
    • 2023
  • Background: A breast cancer is the second leading cause of cancer death in women worldwide and among different types of breast cancers, triple-negative breast cancer (TNBC) has a poor prognosis. Methods: We investigated the potential of ginsenoside compound K (CK), an active ingredient in the bio-transformed ginsenoside, to be used as a therapeutic ingredient by examining the effects of CK on cell proliferation, apoptosis, and cancer-related gene expressions in breast cancer cells. Results: From the results of treating MCF-7, an ER and PR-positive breast cancer cells, and MDA-MB-231 (TNBC) with CK at a concentration of 0-100 µM, the half maximal inhibitory concentration (IC50) values for each cell were 52.17 µM and 29.88 µM, respectively. And also, it was confirmed that cell migration was inhibited above the IC50 concentration. In addition, fluorescence analysis of Apoptosis/Necrosis showed that CK induced apoptosis rather than necrosis of breast cancer cells. Through qPCR, it was confirmed that the expression of genes related to apoptosis and cell cycle arrest was increased in CK-treated breast cancer cells, and it acted more effectively on TNBC. However, the expression of genes related to tumor invasion and metastasis is also increased, so it is necessary to consider the timing of application of CK as a potential therapeutic anticancer compound. Conclusions: CK showed a stronger inhibitory effect in TNBC with poor prognosis but considering the high tumor invasion and metastasis-related gene expression, the timing of application of CK should be considered.

Relationship Between Plant Viral Encoded Suppressor to Post-transcriptional Gene Silencing and Elicitor to R Gene-specific Host Resistance

  • Park, Chang-Won;Feng Qu;Tao Ren;T. Jack Morris
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.22-29
    • /
    • 2004
  • Many important horticultural and field crops are susceptible to virus infections or may possess a degree of resistance to some viruses, but become infected by others. Plant viruses enter cells through the presence of wounds, and replicate intracellularly small genomes that encode genes required for replication, cell-to-cell movement and encapsidation. There are numerous evidences from specific virus-host interactions to require the involvement of host factors and steps during viral replication cycle. However, viruses should deal with host defense responses either by general or specific mechanisms, targeting viral components or genome itself. On the other hand, the host plants have also adapted to defend themselves against viral attack by operating different lines of resistance responses. The defense-related interactions provide new insights into the complex molecular strategies for hosts for defense and counter-defense employed by viruses.

α-Kleisin subunit of cohesin preserves the genome integrity of embryonic stem cells

  • Seobin Yoon;Eui-Hwan Choi;Seo Jung Park;Keun Pil Kim
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.108-113
    • /
    • 2023
  • Cohesin is a ring-shaped protein complex that comprises the SMC1, SMC3, and α-kleisin proteins, STAG1/2/3 subunits, and auxiliary factors. Cohesin participates in chromatin remodeling, chromosome segregation, DNA replication, and gene expression regulation during the cell cycle. Mitosis-specific α-kleisin factor RAD21 and meiosis-specific α-kleisin factor REC8 are expressed in embryonic stem cells (ESCs) to maintain pluripotency. Here, we demonstrated that RAD21 and REC8 were involved in maintaining genomic stability and modulating chromatin modification in murine ESCs. When the kleisin subunits were depleted, DNA repair genes were downregulated, thereby reducing cell viability and causing replication protein A (RPA) accumulation. This finding suggested that the repair of exposed single-stranded DNA was inefficient. Furthermore, the depletion of kleisin subunits induced DNA hypermethylation by upregulating DNA methylation proteins. Thus, we proposed that the cohesin complex plays two distinct roles in chromatin remodeling and genomic integrity to ensure the maintenance of pluripotency in ESCs.