• Title/Summary/Keyword: Cell cultures

Search Result 1,278, Processing Time 0.024 seconds

Effectcs of Plant Growth Regulators on Growth and Berberine Production in Cell Suspension Cultures of Thalictrum rugosum (Thalictrum rugosum 세포배양에서 식물생장 조절물질이 세포증식 및 Berberine 생산에 미치는 영향)

  • 김동일
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.327-330
    • /
    • 1990
  • The effects of various plant growth regulators, both auxins and cytokinins, on cell growth and berberine production were investigated in cell suspension cultures of Thafictrum rugosum. Indole-%-acetic acid (IAA) was found to be the best for berberine production among five examined plant growth regulators and the optimum concentration of IAA was 1 $\mu \textrm M$. The enhancement compared to control 2, 4-dichlorophenoxyacetic acid (2, 4-D) was more than 60%. Simultaneous addition of cytokinins such as kinetin and 6-benzylamiroyurine (BA) was inhibitory.

  • PDF

Enhanced Berberine Production in Sucrose Solution by Plant Cell Suspension Cultures of Thalictrum rugosum (자당 수용액을 이용한 Thalictrum rugosum 식물세포배양에서의 berberine 생산성 증진)

  • 김동일
    • KSBB Journal
    • /
    • v.7 no.3
    • /
    • pp.222-228
    • /
    • 1992
  • The effects of sucrose solution on cell growth and berberine production were studied in Thalictrum rugosum cell cultures. Application of sucrose solution without any other components enhanced berberine accumulation significantly in spite of slower cell growth. At high sucrose concentration, cells became very compact and fourfold increase in specific berberine content was achieved. Optimum concentration of sucrose in plain water to maximize the productivity was found to be 8%. Time course experiment in 8% sucrose solution showed that more than 5 days were required to utilize the advantage of this system efficiently. Addition of vitamins, growth regulators, and inorganic salts into the solution was not effective in increasing berberine productivity.

  • PDF

Effects of Various Stabilizers on the Production of hGM-CSF in Transgenic Nicotiana tabacum Suspension Cell Cultures (형질전환된 담배세포배양을 이용한 hGM-CSF 생산에서 여러 가지 단백질 안정제가 미치는 영향)

  • Cho, Jong-Moon;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.185-190
    • /
    • 2007
  • Productivity of secreted recombinant protein depends largely on its stability in the extracellular environment with protease. Most hGM-CSF produced by transgenic tobacco cell cultures and secreted to the medium was confirmed to be rapidly degraded by protease in medium. To increase the productivity, therefore, various protein stabilizers such as gelling agents such as carrageenan and alginate, polymers, polyols, and amino acids have been tested. The stability of hGM-CSF in spent medium without cells was improved by the presence of gelling agents. However, the reason for the enhanced production by the addition of gelling agents may be due to the increased expression level and permeability rather than stability. The addition of DMSO inhibited the cell growth, but improved specific yield. The others were not effective for stability as well as hGM-CSF production.

Effect of Light on Production of Athocyanin and Betacyanin Thruough Cell Suspension Culture Systems in Vitis vinyfera L. and Phytolacca americana L. (포도와 미국자리공 세포현탁배양계 안토시아닌과 베타시아닌에 미치는 광의 영향)

  • 최관삼;인준교;이영복
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.1
    • /
    • pp.47-53
    • /
    • 1994
  • The effects of light on the production of anthocyanin and betacyanin in cell suspension cultures of Vitis vinifera and Phytolacca americana were investigated. The cell growth of V.vinifera was little affected by exposure to light, but that of P.americana was markedly increased by light than in the dark In suspension cultures of V vinifera maximum accumulation of anthocyanin was observed during the stationary phase in continuous light By contrast, in suspension cultures of R americana, accumulation of betacyanin occured in parallel with cell division which showed two peaks after 4 days and 8 days of culture in continuous light whereas in continuous dark accumulation of anthocyanin and betacyanin did not occured However treatment of light interrupting for l, 12, and 24 h after 4 days in cell suspension. cultures of remarkably showed a slight anthocyanin accumulation, but after 8 days of culture remarkably accumulated by light interrupting for more than 12 h. In cultures of P. americana, the light treatment was more effective at 4th day than at 7th day after culture, but betacyanin accumulation was decreased again in the dark after light treatment These result indicate that the difference of light responses exist between the V.vinifera and the betacyanin of P. americana though cell suspension culture systems.

  • PDF

Neuroprotective and Anti-Oxidative Effect of Puerariae Radix on Hippocampal Neurons and BV-2 Microglia Cells (갈근(葛根)의 뇌해마(腦海馬) 신경세포 손상보호와 항산화(抗酸化) 효능에 대한 연구)

  • Kim, Sang-Hyun;Kim, Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.416-425
    • /
    • 2005
  • This study demonstrated neuroprotective and anti-oxidative effects of Puerariae Radix for cerebral ischemia. Neuroprotective effects were studied by using oxygen/glucous deprivation of the organotypic hippocampal slice cultures to complement limitations of in vivo and in vitro models for cerebral ischemia study. Anti-oxidative effects were studied on BV-2 microglia cells damaged by $H_2O_2$ and nitric oxide. The results obtained are as follows; The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in CA1 region of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in DG region of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant decreases of TUNEL-positive cells in both CA1 region and DG region of ischemic damaged hippocampus cultures. The group treated with $50\;{\mu}g/m{\ell}$ of Puerariae Radix demonstrated significant decrease of TUNEL-positive cells in CA1 region. The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant decreases of LDH concentrations in culture media of ischemic damaged hippocampus cultures. The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant increases of cell viabilities of BV-2 microglia cells damaged by $H_2O_2$. The group treated with $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant increase of cell viability of BV-2 microglia cells damaged by nitric oxide. These results suggested that Puerariae Radix of cerebral ischemic revealed neuroprotective effects through the control effect of apoptosis and oxidative damages.

Ginsenosides Rbl and Rg3 Attenuate Glutamate-induced Neurotoxicity in Primary Cultures of Rat Cortical Cells

  • Kim, Young-C.;Kim, So.R.;Markelonis, George J.;Oh, Tae-H.
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.47-56
    • /
    • 1998
  • In the present study, we assayed a number of compounds isolated from Panax ginseng C. A. Meyer (Araliaceae) for an ability to protect rat cortical cell cultures from the deleterious effects of the neurotoxicant, glutamate. We found that ginsenosides Rbl and Rg3 significantly attenuated glutamate-induced neurotoxicity. Brief exposure of cultures to excess glutamate caused extensive neuronal death. Glutamate-induced neuronal cell damage was significantly reduced by pretreatment with Rbl and Rgl. Ginsenosides Rbl and Rg3 inhibited the overproduction of nitric oxide which routinely follows glutamate neurotoxicity and preserved the level of superoxide dismutase in glutamate-treated cells. Furthermore, in cultures treated with glutamate, these ginsenosides inhibited the formation of malondialdehyde, a compound produced during lipid peroxidation, and diminished the influx of calcium. These results show that ginsenosides Rbl and Rg1 exerted significant neuroprotective effects on cultured cortical cells. As such, these compounds may be efficacious in protecting neurons from oxidative damage produced by exposure to excess glutamate.

  • PDF

Diels-Alder Type Adducts from Hairy Root Cultures of Morus macroura

  • Happyana, Nizar;Hakim, Euis H.;Syah, Yana M.;Kayser, Oliver;Juliawaty, Lia D.;Mujahidin, Didin;Ermayanti, Tri M.;Achmad, Sjamsul A.
    • Natural Product Sciences
    • /
    • v.25 no.3
    • /
    • pp.233-237
    • /
    • 2019
  • Three Diels-Alder type adducts, guangsangon E (1), chalcomoracin (2) and sorocein I (3) were isolated from hairy root cultures of Morus macroura. The structures of the isolated compounds (1-3) were determined by spectroscopic method (NMR and MS), and spectral comparison to literature. Cytotoxic activities of the isolated compounds (1 - 3) were investigated against P-388 murine leukemia cell line. Guangsangon E (1) showed the most potent cytotoxicity against P-388 murine leukemia cell line with $IC_{50}$ value of $2.75{\pm}0.32{\mu}g/mL$. To the best of our knowledge, guangsangon E (1) and sorocein I (3) were reported for the first time from the tissue cultures of M. macroura.

Bioreactor Cultures of Lithospermum erythrorhizon for Shikonin Production with In Situ Extraction (동시 추출을 겸한 생물반응기에서 Lithospermum erythrorhizon 배양에 의한 shikonin 생산)

  • 김동진;장호남
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.5
    • /
    • pp.525-529
    • /
    • 1990
  • Plant cell cultures of Lithospermum erythrorhizon were performed in stirred tank and packed-bed reactors with in situ extraction by n-hexadecane. The specific shikonin production and volumetric shikonin productivity of stirred tank reactor reached 1.5 mg shikoninlg cell and 400$\mu g$ shikonin/(L.day), respectively. In packed-bed reactor with calcium alginate-immobilized cells specific shikonin production and volumetric productivity reached 2.0 mg shikoninlg cell and 2857$\mu g$ shikonin/(L.day), which were 1.3 and 7.1 times higher than those of stirred tank reactor, respectively. The higher shikonin production and productivity of packed-bed reactor seemed to be due to high cell loading capacity of calcium alginate immobilized cells in packed-bed reactor and improved cell-cell contact.

  • PDF

Production of Ginkgolides and Bilobalide from Optimized the Ginkgo biloba Cell Culture

  • Park, Young-Goo;Kim, Su-Jung;Kang, Young-Min;Jung, Hee-Young;D. Theertha Prasad;Kim, Sun-Won;Chung, Young-Gwan;Park, Myung-Suk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.1
    • /
    • pp.41-46
    • /
    • 2004
  • The influence of various culture conditions on growth and ginkgolides (GKA and GKB), and bilobalide formation in callus and suspension cultures of Ginkgo biloba were investigated. Callus induced from the leaf petioles exhibited distinct morphological and physiological responses. The cell biomass and ginkgolides content varied among the cell lines; brownish callus lines produced high levels of ginkgolides and bilobalide in spite of poor cell growth. Among the culture media used, MS medium showed significant effect on cell growth and ginkgolides production. Low concentration of sucrose (3%) improved cell growth, while higher sucrose levels (5 and 7%) improved ginkgolides production. Cultivation of callus cultures above 28$^{\circ}C$ dramatically reduced their growth rate; however the cell lines grown at 36$^{\circ}C$ showed increased levels of bilobalide content. A 2.5-L balloon type bubble bioreactor (BTBB) was successfully developed for the cell growth and ginkgolides production.

Characteristics of Cell Growth and Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] Synthesis by Alcaligenes latus and Comamonas acidovorans (Alcaligenes latus와 Comamonas acidovorans의 균체성장 및 Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] 합성 특성)

  • Song Jae Yang;Kim Beam Soo
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.358-362
    • /
    • 2004
  • Characteristics of cell growth and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] synthesis was investigated through flask and batch cultures of Alcaligenes latus and Comamonas acidovorans. The specific growth rate of C. acidovorans increased with yeast extract concentration and decreased with 1,4-butanediol concentration. Optimum glucose concentration for growth of C. acidovorans was 20 g/L. In one-step flask cultures of C. acidovorans, final dry cell weight and PHA content decreased with the ratio of 1,4-butanediol to glucose, while the 4HB fraction in copolymers gradually increased to 100 $mol\%$ with an initial 1,4-butanediol concentration of 20 g/L as single carbon source. The specific growth rate of A. latus decreased with v-butyrolactone concentration and optimum sucrose concentration for growth was 10 g/L. In batch cultures of A. latus, 4HB fraction increased with initial v-butyrolactone concentration. P(3HB-co-4HB) with 19 $mol\%$ 4HB was obtained when the initial ratio of v-butyloractone (g/L) to sucrose (g/L) was 10 : 10.