• Title/Summary/Keyword: Cell Turnover Time

Search Result 14, Processing Time 0.017 seconds

Fluctuation of Phytoplankton Biomass and Primary Productivity in Closed Marine Ecosystem, Inchon Dock (인천권 폐쇄 해양생태계 식물플랑크톤의 생물량과 일차생산력)

  • 유종수
    • Journal of Plant Biology
    • /
    • v.35 no.4
    • /
    • pp.323-332
    • /
    • 1992
  • Chlorophyll-a concentrations of phytoplankton and primary productivities in closed marine ecosystem, Inchon Dock, were measured and analyzed monthly from August, 1990 to December, 1991. Chlorophyll-a concentrations ranged from 1.61 to $28.67\;\mu\textrm{g}\;Chi-a/I$, where nanoplankton ($2-20\;\mu\textrm{m}$) fractions contributed in 19.0-82.3% and picoplankton ($0.2-2\;\mu\textrm{m}$) fractions in 4.5-51.4%. Primary productivities measured by $^{14}C$ method ranged from 49.4 to $4359.4\;mg\;C{\cdot}m^{-2}{\cdot}day^{-I}$, where nanoplankton ($20\;\mu\textrm{m}$) contributed in 18.8-94.6%. These results implied that very tiny cell-sized phytoplankton populations were important in point of chlorophyll-a concentration and primary productivity of phytoplankton community. In monthly variations of chlorophyll-a concentration by phytoplankton, the first peak occurred in March and the second in August. Nitrogen requirement by phytoplankton ranged from 0.7 to $60.7\;mg\;at-N{\cdot}m^{-2}{\cdot}day^{-I}$ and the turnover time of inorganic nitrogen showed maximum during winter and minimum in summer. Carbon assimilation number increased in summer and decreased in winter.winter.

  • PDF

Heterologous Expression of Yeast Prepro-$\alpha$-factor in Rat $GH_3$ Cells

  • Lee, Myung-Ae;Cheong, Kwang-Ho;Han, Sang-Yeol;Park, Sang-Dai
    • Animal cells and systems
    • /
    • v.4 no.2
    • /
    • pp.157-163
    • /
    • 2000
  • Yeast pheromone a-factor is a 13-amino acid peptide hormone that is synthesized as a part of a larger precursor, prepro-$\alpha$-factor, consisting of a signal peptide and a proregion of 64 amino acids. The carboxy-terminal half of the precursor contains four tandem copies of mature $\alpha$-factor. To investigate the molecular basis of intracellular sorting, proteolytic processing, and storage of the peptide hormone, yeast prepro-$\alpha$-factor precursors were heterologously expressed in rat pituitary $GH_3 cells. When cells harboring the precursor were metabolically labeled, a species of approximately 27 kD appeared inside the cells. Digestion with peptide: N-glycosidase F (PNG-F) shifted the molecular mass to a 19 kD, suggesting that the 27 kD protein was the glycosylated form as in yeast cells. The nascent polypeptide is efficiently targeted to the ER in the $GH_3 cells, where it undergoes cleavage of its signal peptide and core glycosylation to generate glycosylated pro-a-factor. To look at the post ER intracellular processing, the pulse-labelled cells were chased up to 2 hrs. The nascent propeptides disappeared from the cells at a half life of 30 min and only 10-25% of the newly synthesized, unprocessed precursors were stored intracellularly after the 2 h chase. However, about 20% of the pulse-labeled pro-$\alpha$-factor precursors were secreted into the medium in the pro-hormone form. With increasing chase time, the intracellular level of propeptide decreased, but the amount of secreted propeptide could not account for the disappearance of intracellular propeptide completely. This disappearance was insensitive to lysosomotropic agents, but was inhibited at $16^{circ}C or 20^{\circ}C$, suggesting that the turnover of the precursors was not occurring in the secretory pathway to trans Golgi network (TGN) or dependent on acidic compartments. From these results, it is concluded that a pan of these heterologous precursors may be processed at its paired dibasic sites by prohormone processing enzymes located in TGN/secretpry vesicles producing small peptides, and that the residual unprocessed precursors may be secreted into the medium rather than degraded intracellularly.

  • PDF

Chronophin activation is necessary in Doxorubicin-induced actin cytoskeleton alteration

  • Lee, Su Jin;Park, Jeen Woo;Kang, Beom Sik;Lee, Dong-Seok;Lee, Hyun-Shik;Choi, Sooyoung;Kwon, Oh-Shin
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.335-340
    • /
    • 2017
  • Although doxorubicin (Dox)-induced oxidative stress is known to be associated with cytotoxicity, the precise mechanism remains unclear. Genotoxic stress not only generates free radicals, but also affects actin cytoskeleton stability. We showed that Dox-induced RhoA signaling stimulated actin cytoskeleton alterations, resulting in central stress fiber disruption at early time points and cell periphery cortical actin formation at a later stage, in HeLa cells. Interestingly, activation of a cofilin phosphatase, chronophin (CIN), was initially evoked by Dox-induced RhoA signaling, resulting in a rapid phosphorylated cofilin turnover leading to actin cytoskeleton remodeling. In addition, a novel interaction between CIN and $14-3-3{\zeta}$ was detected in the absence of Dox treatment. We demonstrated that CIN activity is quite contrary to $14-3-3{\zeta}$ binding, and the interaction leads to enhanced phosphorylated cofilin levels. Therefore, initial CIN activation regulation could be critical in Dox-induced actin cytoskeleton remodeling through RhoA/cofilin signaling.

The Application of NIRS for Soil Analysis on Organic Matter Fractions, Ash and Mechanical Texture

  • Hsu, Hua;Tsai, Chii-Guary;Recinos-Diaz, Guillermo;Brown, John
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1263-1263
    • /
    • 2001
  • The amounts of organic matter present in soil and the rate of soil organic matter (SOM) turnover are influenced by agricultural management practice, such as rotation, tillage, forage plow down direct seeding and manure application. The amount of nutrients released from SOM is highly dependent upon the state of the organic matter. If it contains a large proportion of light fractions (low-density) more nutrients will be available to the glowing crops. However, if it contains mostly heavy fractions (high-density) that are difficult to breakdown, then lesser amounts of nutrients will be available. The state of the SOM and subsequent release of nutrients into the soil can be predicted by NIRS as long as a robust regression equation is developed. The NIRS method is known for its rapidity, convenience, simplicity, accuracy and ability to analyze many constituents at the same time. Our hypothesis is that the NIRS technique allows researchers to investigate fully and in more detail each field for the status of SOM, available moisture and other soil properties in Alberta soils for precision farming in the near future. One hundred thirty one (131) Alberta soils with various levels (low 2-6%, medium 6-10%, and high >10%) of organic matter content and most of dry land soils, including some irrigated soils from Southern Alberta, under various management practices were collected throughout Northern, Central and Southern Alberta. Two depths (0- 15 cm and 15-30 cm) of soils from Northern Alberta were also collected. These air-dried soil samples were ground through 2 mm sieve and scanned using Foss NIR System 6500 with transport module and natural product cell. With particle size above 150 microns only, the “Ludox” method (Meijboom, Hassink and van Noorwijk, Soil Biol. Biochem.27: 1109-1111, 1995) which uses stable silica, was used to fractionate SOM into light, medium and heavy fractions with densities of <1.13, 1.13-1.37 and >1.37 respectively, The SOM fraction with the particle size below 150 microns was discarded because practically, this fraction with very fine particles can't be further separated by wet sieving based on density. Total organic matter content, mechanical texture, ash after 375$^{\circ}C$, and dry matter (DM) were also determined by “standard” soil analysis methods. The NIRS regression equations were developed using Infra-Soft-International (ISI) software, version 3.11.

  • PDF