• Title/Summary/Keyword: Cell Printing

Search Result 219, Processing Time 0.034 seconds

Enhanced Electrochemical Reactivity at Electrolyte/electrode Interfaces of Solid Oxide Fuel Cells with Ag Grids

  • Choi, Mingi;Hwang, Sangyeon;Byun, Doyoung;Lee, Wonyoung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.356-360
    • /
    • 2015
  • The specific role of current collectors was investigated at the electrolyte/electrode interface of solid oxide fuel cells (SOFCs). Ag grids were fabricated as current collectors using electrohydrodynamic (EHD) jet printing for precise control of the grid geometry. The Ag grids reduced both the ohmic and polarization resistances as the pitch of the Ag grids decreased from $400{\mu}m$ to $100{\mu}m$. The effective electron distribution along the Ag grids improved the charge transport and transfer at the interface, extending the active reaction sites. Our results demonstrate the applicability of EHD jet printing to the fabrication of efficient current collectors for performance enhancement of SOFCs.

Fabrication Method of OPV using ESD Spray Coating (ESD 스프레이를 이용한 OPV 제작 기법)

  • Kim, Jungsu;Jo, Jeongdai;Kim, Dongsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.84.2-84.2
    • /
    • 2010
  • PEMS (printed electro-mechanical system) is fabricated by means of various printing technologies. Passive and active components in 2D or 3D such as conducting lines, resistors, capacitors, inductors and TFT, which are printed with functional materials, can be classified in this category. And the issue of PEMS is applied to a R2R process in the manufacturing process. In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem: it is difficult to apply toa continuous process as a R2R printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, anelectrostatic atomizer sprays micro-drops from the solution injected into the capillary, with electrostatic force generated by electric potential of about tens of kV. ESD method is usable in the thin film coating process of organic materials and continuous process as a R2R manufacturing process. Therefore, we experiment the thin films forming of PEDOT:PSS layer and Active layer which consist of the P3HT:PCBM. The result of experiment, organic solar cell using ESD thin film coated method is occurred efficiency of about 1.4%. Also, the case of only used to ESD method in the active layer coating is occurred efficiency of about 1.86% as the applying a spin coating in the PEDOT:PSS layer. We can expect that ESD method is possible for continuous process to manufacture in the organic solar cell or OLED device.

  • PDF

The build angle of 3D printing denture base resin on candida albicans adhesion. (의치상레진의 3D 프린팅 출력 각도가 Candida albicans의 부착에 미치는 영향)

  • Park, Su-Jung;Song, Young-Gyun
    • The Journal of the Korean dental association
    • /
    • v.58 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • Purpose: The purpose of this study is to compare the adhesion of Candida albicans according to build angle in 3D printing denture base resin. Methods: The 3D printing was performed by setting the build angle of the disk type specimen designed by CAD program at 0 degree, 30 degrees, 60 degrees, and 90 degrees. Surface roughness was measured using a non-contact 3D microsurface profiler. The specimens were incubated in Candida albicans suspension for 24 hours. The attached Candida albicans were detached by cell scraper. The suspension of detached C. albicans was serially diluted and plated on Trypticase soy broth. After 48 hours of incubation, total colony forming unit was counted. Results: There was no significant difference in surface roughness(Sa) between the test groups, but the interlayer boundary was observed. There was no statistically significant difference in total colony forming units of Candida albicans between the test groups. Conclusion: There was no difference in the average surface roughness and adhesion of Candida albicans between the specimens. It is considered that the setting of the build angle should be set considering the accuracy or strength rather than the roughness of the surface.

  • PDF

A Study on the Composition of Silver Paste for Micro Nozzle Dispensing Method (미세노즐 토출에 적용 가능한 은 전극의 조성에 대한 연구)

  • Kim, Do-Hyung;Shin, Dong-Wook;Ryu, Sung-Soo;Chang, Hyo-Sik;Kim, Hyeong-Jun
    • New & Renewable Energy
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2012
  • The screen printing has been widely used to form silver electrodes in solar cell device due to their simplicity of process. However, the wavy and irregular surface which is believed to be originated from a screen mask mesh and thixotropic characteristics of paste on screen printing process is well-known to give a negative effect on solar cell efficiency. The dispensing method that the silver paste is extruded through micro nozzle under a moderate pressure and coated on substrate can form the silver electrode without any wavy surface. In this study, we optimize the composition of silver paste and develop paste blending condition based on the thixotropic behavior of paste. The optimized paste shows a large thixotropic loop area which is related to an aspect ratio of electrode line and has the viscosity of 40 $Pa{\cdot}s$ at 40 s-1. The electrode line we finally obtainis 67.2 ${\mu}m$ in width and has an aspect ratio of 0.277.

A Study on Load Cell Development by means of a Nano-Carbon Piezo-resistive Composite and 3D printing (탄소나노튜브 복합소재 전왜 특성과 3D 프린팅을 활용한 로드셀 개발 연구)

  • Kang, Inpil;Joung, Kwan Young;Choi, Beak Gyu;Kim, Sung Yong;Oh, Gwang Won;Kim, Byung Tak;Baek, Woon Kyung
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.97-102
    • /
    • 2020
  • This paper presents the basic research for the design and fabrication of a 3D-printed load cell made of NCPC (nano-carbon piezo-resistive composite). We designed a structure that can resonate at a low frequency range of about 5-6 Hz with ANSYS using sensitivity analysis and a response surface method. The design was verified by fabricating the device with a low-quality commercial 3D printer and ABS filament. We conducted a feasibility test for a commercial sensor using 1000 cyclic load tests at 0.3 Hz in a material testing system. A manufacturing process for the 3D printer filament based on the NCPC was also developed using the nano-composite process.

The application of Nano-paste for high efficiency back contact Solar cell (고효율 후면 전극형 태양전지를 위한 나노 Paste의 적용에 대한 연구)

  • Nam, Donghun;Lee, Kyuil;Park, Yonghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.53.2-53.2
    • /
    • 2010
  • In this study, we focused on our specialized electrode process for Si back-contact crystalline solar cell. It is different from other well-known back-contact cell process for thermal aspect and specialized process. In general, aluminum makes ohmic contact to the Si wafer and acts as a back surface reflector. And, silver is used for low series resistance metal grid lines. Aluminum was sputtered onto back side of wafer. Next, silver is directly patterned on the wafer by screen printing. The sputtered aluminum was removed by wet etching process after rear silver electrode was formed. In this process, the silver paste must have good printability, electrical property and adhesion strength, before and after the aluminum etching process. Silver paste also needs low temperature firing characteristics to reduce the thermal budget. So it was seriously collected by the products of several company of regarding low temperature firing (below $250^{\circ}C$) and aluminum etching endurance. First of all, silver pastes for etching selectivity were selected to evaluate as low temperature firing condition, electrical properties and adhesive strength. Using the nano- and micron-sized silver paste, so called hybrid type, made low temperature firing. So we could minimize the thermal budget in metallization process. Also the adhesion property greatly depended on the composition of paste, especially added resin and inorganic additives. In this paper, we will show that the metallization process of back-contact solar cell was realized as optimized nano-paste characteristics.

  • PDF

Development of a cell-laden thermosensitive chitosan bioink for 3D bioprinting

  • Ku, Jongbeom;Seonwoo, Hoon;Jang, Kyoung-Je;Park, Sangbae;Chung, Jong Hoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.107-107
    • /
    • 2017
  • 3D bioprinting is a technology to produce complex tissue constructs through printing living cells with hydrogel in a layer-by-layer process. To produce more stable 3D cell-laden structures, various materials have been developed such as alginate, fibrin and gelatin. However, most of these hydrogels are chemically bound using crosslinkers which can cause some problems in cytotoxicity and cell viability. On the other hand, thermosensitive hydrogels are physically cross-linked by non-covalent interaction without crosslinker, facilitating stable cytotoxicity and cell viability. The examples of currently reported thermosensitive hydrogels are poly(ethylene glycol)/poly(propylene glycol)/poly(ethylene glycol) (PEG-PPG-PEG) and poly(ethylene glycol)/poly(lactic acid-co-glycolic acid) (PEG/PLGA). Chitosan, which have been widely used in tissue engineering due to its biocompatibility and osteoconductivity, can be used as thermosensitive hydrogels. However, despite the many advantages, chitosan hydrogel has not yet been used as a bioink. The purpose of this study was to develop a bioink by chitosan hydrogel for 3D bioprinting and to evaluate the suitability and potential ability of the developed chitosan hydrogel as a bioink. To prepare the chitosan hydrogel solution, ${\beta}-glycerolphosphate$ solution was added to the chitosan solution at the final pH ranged from 6.9 to 7.1. Gelation time decreased exponentially with increasing temperature. Scanning electron microscopy (SEM) image showed that chitosan hydrogel had irregular porous structure. From the water soluble tetrazolium salt (WST) and live and dead assay data, it was proven that there was no significant cytotoxicity and that cells were well dispersed. The chitosan hydrogel was well printed under temperature-controlled condition, and cells were well laden inside gel. The cytotoxicity of laden cells was evaluated by live and dead assay. In conclusion, chitosan bioink can be a candidate for 3D bioprinting.

  • PDF

Electrical Properties of Solar Cells With the Reactivity of Ag pastes and Si Wafer (Ag paste와 실리콘 웨이퍼의 반응성에 따른 태양전지의 전기적 성질)

  • Kim, Dong-Sun;Hwang, Seong-Jin;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.54-54
    • /
    • 2009
  • Ag thick film has been used for electrode materials with the excellent conductivity. Ag electrode is used in screen-printed silicon solar cells as a electrode material. Compared to photolithography and buried-contact technology, screen-printing technology has the merit of fabricating low-priced cells and enormous cells in a few hours. Ag paste consists of Ag powders, vehicles and additives such as frits, metal powders (Pb, Bi, Zn). Frits accelerate the sintering of Ag powders and induce the connection between Ag electrode and Si wafer. Thermophysical properties of frits and reactions among Ag, frits and Si influence on cell performance. In this study, Ag pastes were fabricated with adding different kinds of frits. After Ag pastes were printed on silicon wafer by screen-printing technology, the cells were fired using a belt furnace. The cell parameters were measured by light I-V to determine the short-circuit current, open-circuit voltage, FF and cell efficiency. In order to study the relationship between the reactivity of Ag, frit, Si and the electrical properties of cells, the reaction of frits and Si wafer on was studied with thermal properties of frits. The interface structure between Ag electrode and Si wafer were also measured for understanding the reactivity of Ag, frit and Si wafer. The excessive reactivity of Ag, frit and Si wafer certainly degraded the electrical properties of cells. These preliminary studies suggest that reactions among Ag, frits and Si wafer should optimally be controlled for cell performances.

  • PDF

Comparison between mechanical properties and biocompatibility of experimental 3D printing denture resins according to photoinitiators (광개시제에 따른 실험용 3D 프린팅 의치상 레진의 기계적 성질과 생체적합성 비교)

  • Park, Da Ryeong;Son, Ju lee
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.355-361
    • /
    • 2020
  • Purpose: In this study, we added two kinds of photoinitiators (CQ and TPO) to prepare two kinds of denture base resins (Bis-GMA series and UDMA series) for three-dimensional (3D) printing to compare and analyze their mechanical and biological properties and to find the optimal composition. Methods: Control specimens were made using the mold made of polyvinyl siloxane of the same size. Light curing was performed twice for 20 seconds on both the upper and lower surfaces with LED (light emitting diode) light-curing unit (n=10). Experimental 3D printing dental resins were prepared, to which two photoinitiators were added. Digital light processing type 3D printer (EMBER, Autodesk, CA, USA) was used for 3D printing. The specimen size was 64 mm×10 mm×3.3 mm according to ISO 20795-1. The final specimens were tested for flexural strength and flexural modulus, and MTT test was performed. Furthermore, one-way analysis of variance was performed, and the post-test was analyzed by Duncan's test at α=0.05. Results: The flexural strength of both Bis-GMA+CQ (97.12±6.47 MPa) and UDMA+TPO (97.40±3.75 MPa) was significantly higher (p<0.05) in the experimental group. The flexural modulus in the experimental group of UDMA+TPO (2.56±0.06 GPa) was the highest (p<0.05). MTT test revealed that all the experimental groups showed more than 70% cell activity. Conclusion: The composition of UDMA+TPO showed excellent results in flexural strength, flexural modulus, and biocompatibility.

BCSC(Buired contact Solar cel1)의 제조를 위한 laser scribing Laser scrining for Buired contact Solar ell

  • 조은철;지일환;이수홍
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.154-159
    • /
    • 1995
  • To achieve a high aspect ration of metal contact, buried contact solar cell scribe the silicon surface using laser. The Q-switched NdLYAG laser which has 1.064$\mu\textrm{m}$ wavelength use for silicon scribing with 25~40$\mu\textrm{m}$ width and 20~200$\mu\textrm{m}$ depth capabilities. The 2~3% shading losses are very low campared to the screen printing solar cell. In this paper, we investigate the silicon scribing theory and pratice, scribing system for BCSC processing.

  • PDF