• Title/Summary/Keyword: Cell Junction Protein

Search Result 56, Processing Time 0.028 seconds

Phosphorylation of tyrosine-14 on Caveolin-1 enhances lipopolysaccharide-induced inflammation in human intestinal Caco-2 cells

  • Gong Deuk Bae;Kyong Kim;Se-Eun Jang;Dong-Jae Baek;Eun-Young Park;Yoon Sin Oh
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.311-319
    • /
    • 2023
  • Caveolin-1 (Cav-1) is the main structural component of the caveolae on the plasma membrane, which regulates various cellular processes, including cell growth, differentiation, and endocytosis. Although a recent study demonstrated that Cav-1 might be involved in diabetes-associated inflammation, its exact role in the intestine was unclear. In this study, we examined the intestinal expression of Cav-1 in diabetic conditions. We also investigated its effect on lipopolysaccharide (LPS)-induced inflammation by expressing this protein in human intestinal Caco-2 cells lacking Cav-1. We observed that increased Cav-1 levels and decreased expression of tight junction proteins affected intestinal permeability in high-fat diet-induced diabetic mice. When Caco-2 cells were treated with LPS, Cav-1 enhanced the NF-κB signaling. Moreover, LPS reduced the expression of tight junction proteins while it increased cell-cell permeability and reactive oxygen species generation in Caco-2 cells and this effect was amplified by cav-1 overexpression. LPS treatment promoted phosphorylation of tyrosine-14 (Y14) on Cav-1, and the LPS-induced NF-κB signaling was suppressed in cells expressing non-phosphorylatable Cav-1 (tyrosine-14 to phenylalanine mutant), which reduced intestinal barrier permeability. These results suggest that Cav-1 expression promotes LPS-induced inflammation in Caco-2 cells, and phosphorylation of Y14 on Cav-1 might contribute to the anti-inflammatory response in LPS-induced NF-κB signaling and cell permeability.

Indol-3-Carbinol Regulated Tight Junction Permeability and Associated-Protein Level and Suppressed Cell Invasion in Human Colon Cancer Cell Line, HT-29 (인돌 (Indol-3-Carbinol)이 인체대장암세포 HT-29 세포의 투과성 밀착결합조절과 세포 침윤성 억제에 미치는 영향)

  • Kim, Sung-Ok;Choi, Yung-Hyun;Choe, Won-Kyung
    • Journal of Nutrition and Health
    • /
    • v.41 no.1
    • /
    • pp.13-21
    • /
    • 2008
  • To determine whether indol-3-carbinol (BC, $C_9H_9NO$), an autolysis product of a glucosinolate and a glucobrassicin in vegetables, regulated tight junction proteins (TJ) and suppressed cell invasion in colon cancer cells, this experiment was performed. Our results indicate that I3C inhibit cell growth of HT-29 cells in a dose (0, 50, $100{\mu}M$) and time (0, 24 and 48h) dependent manner. Using the wound healing and matrigel invasion study, respectively, BC inhibits the cell motility and invasion of the ovarian cancer cell line. The TEER values were increased in HT-29 cells grown in transwells treated with BC, reversely, paracellular permeability was decreased in those of condition. Claudin-1, claudin-5, ZO-1 and occuldin have been shown to be positively expressed in HT-29 coloncancer cells. I3C occurs concurrently with a significant decrease in the levels of those of proteins in HT-29 cells. But E-cadherin level in the HT-29 was increased by I3C. The reduction of claudin-1 and claudin-5 protein levels occurred post-transcriptionaly since their mRNA levels are no difference by I3C. Therefore, our results suggest that I3C may be expected to inhibit cancer metastasis and invasion by tighten the cell junction and restoring tight junction in colon cancer cell line, HT-29.

Lipoteichoic Acid Isolated from Staphylococcus aureus Induces Both Epithelial-Mesenchymal Transition and Wound Healing in HaCaT Cells

  • Kim, Seongjae;Kim, Hyeoung-Eun;Kang, Boyeon;Lee, Youn-Woo;Kim, Hangeun;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1820-1826
    • /
    • 2017
  • Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, is recognized by Toll-like receptor 2, expressed on certain mammalian cell surfaces, initiating signaling cascades that include nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) and mitogen-activated protein kinase. There are many structural and functional varieties of LTA, which vary according to the different species of gram-positive bacteria that produce them. In this study, we examined whether LTA isolated from Staphylococcus aureus (aLTA) affects the expression of junction proteins in keratinocytes. In HaCaT cells, tight junction-related gene expression was not affected by aLTA, whereas adherens junction-related gene expression was modified. High doses of aLTA induced the phosphorylation of extracellular signal-regulated protein kinases 1 and 2, which in turn induced the epithelial-mesenchymal transition (EMT) of HaCaT cells. When cells were given a low dose of aLTA, however, NF-${\kappa}B$ was activated and the total cell population increased. Taken together, our study suggests that LTA from S. aureus infections in the skin may contribute both to the outbreak of EMT-mediated carcinogenesis and to the genesis of wound healing in a dose-dependent manner.

Rutin alleviated lipopolysaccharide-induced damage in goat rumen epithelial cells

  • Jinshun Zhan;Zhiyong Gu;Haibo Wang;Yuhang Liu;Yanping Wu;Junhong Huo
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.303-314
    • /
    • 2024
  • Objective: Rutin, also called vitamin P, is a flavonoids from plants. Previous studies have indicated that rutin can alleviate the injury of tissues and cells by inhibiting oxidative stress and ameliorating inflammation. There is no report on the protective effects of rutin on goat rumen epithelial cells (GRECs) at present. Hence, we investigated whether rutin can alleviate lipopolysaccharide (LPS)-induced damage in GRECs. Methods: GRECs were cultured in basal medium or basal medium containing 1 ㎍/mL LPS, or 1 ㎍/mL LPS and 20 ㎍/mL rutin. Six replicates were performed for each group. After 3-h culture, the GRECs were harvested to detect the relevant parameters. Results: Rutin significantly enhanced the cell activity (p<0.05) and transepithelial electrical resistance (TEER) (p<0.01) and significantly reduced the apoptosis rate (p<0.05) of LPS-induced GRECs. Rutin significantly increased superoxide dismutase, glutathione peroxidase, and catalase activity (p<0.01) and significantly decreased lactate dehydrogenase activity and reactive oxygen species and malondialdehyde (MDA) levels in LPS-induced GRECs (p<0.01). The mRNA and protein levels of interleukin 6 (IL-6), IL-1β, and C-X-C motif chemokine ligand 8 (CXCL8) and the mRNA level of tumor necrosis factor-α (TNF-α) and chemokine C-C motif ligand 5 (CCL5) were significantly increased in LPS-induced GRECs (p<0.05 or p<0.01), while rutin supplementation significantly decreased the mRNA and protein levels of IL-6, TNF-α, and CXCL8 in LPS-induced GRECs (p<0.05 or p<0.01). The mRNA level of toll-like receptor 2 (TLR2), and the mRNA and protein levels of TLR4 and nuclear factor κB (NF-κB) was significantly improved in LPS-induced GRECs (p<0.05 or p<0.01), whereas rutin supplementation could significantly reduce the mRNA and protein levels of TLR4 (p<0.05 or p<0.01). In addition, rutin had a tendency of decreasing the protein levels of CXCL6, NF-κB, and inhibitor of nuclear factor kappa-B alpha (0.05

Inhibitory Effect of Steviol and Its Derivatives on Cell Migration via Regulation of Tight Junction-related Protein Claudin 8 (스테비올 및 그 유도체의 세포연접 관련 클라우딘 8 발현 조절을 통한 세포이동 저해효과)

  • Choi, Sun Kyung;Cho, Nam Joon;Cho, Uk Min;Shim, Joong Hyun;Kim, Kee K.;Hwang, Hyung Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.403-412
    • /
    • 2016
  • The tight junction, one of Intercellular junctions, performs a variety of biological functions by bonding adjacent cells, including the barrier function to control the movement of the electrolyte and water. Recent studies have revealed that unusual expression of tight junction-related genes have been shown to be related in cancer development and progression. Recently, there are many reports that control of tight junction proteins expression is closely related to the skin moisture. In this study, we are focusing on the regulating mechanism of tight junction-associated genes by the steviol and its derivatives. Steviol, used as a sweetner, is known to chemical compound isolated from stevia plant. The MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) assay was carried out in HaCaT cells (human keratinocyte cell line) in order to determine the cytotoxicity. As a result, while steviol showing cytotoxicity from $250{\mu}M$, steviol derivatives are not cytotoxic more than $250{\mu}M$ concentration. We have observed a change in the tight junction protein via quantitative real-time PCR. Claudin 8 among tight junction proteins is only significantly reduced up to 30% in the presence of steviol. In addition, cell migration was inhibited by steviol, not by stevioside and rebaudioside. Finally, we could observe that steviol, not stevioside and rebaudioside, is able to increase the skin barrier permeability through the transepithelial electric resistance (TEER) measurements. These results suggest that the steviol and its derivatives are specifically acts on the tight junction related gene expression, but steviol derivatives are more suitable as a cosmetic material.

Vitamin D Proliferates Vaginal Epithelium through RhoA Expression in Postmenopausal Atrophic Vagina tissue

  • Lee, Arum;Lee, Man Ryul;Lee, Hae-Hyeog;Kim, Yeon-Suk;Kim, Jun-Mo;Enkhbold, Temuulee;Kim, Tae-Hee
    • Molecules and Cells
    • /
    • v.40 no.9
    • /
    • pp.677-684
    • /
    • 2017
  • Postmenopausal atrophic vagina (PAV) is the thinning of the walls of the vagina and decreased lugae of the vagina. PAV is caused by decreased estrogen levels in postmenopausal women. However, the harmful effects of hormone replacement therapy (HRT) have resulted in considerable caution in its use. Various estrogen agonist treatment options are available. Vitamin D is influences the regulation of differentiation and proliferation of various cells, especially tissues lining stratified squamous epithelium, such as the vaginal epithelium. In this study, we hypothesized that vitamin D could provide an alternative and a safe treatment option for PAV by promoting the proliferation and differentiation of the vaginal epithelium. Thirty six patients were enrolled in this case-control study. Vitamin D associated proteins in a vitamin D and sex hormone treated vaginal epithelial cell line as well as normal and PAV tissues were measured. To confirm of cell-to-cell junction protein expression, cell line and tissue studies included RT-PCR, immunohistochemistry staining, and immunoblot analyses. The expression of cell-to-cell junction proteins was higher in women with symptoms of atrophic vagina tissue compared to women without the symptoms. Vitamin D stimulated the proliferation of the vaginal epithelium by activating p-RhoA and Erzin through the vitamin D receptor (VDR). The results suggest that vitamin D positively regulates cell-to-cell junction by increasing the VDR/p-RhoA/p-Ezrin pathway. This is the first study to verify the relationship of the expression of RhoA and Ezrin proteins in vaginal tissue of PAV.

Ginseng Saponin as an Antagonist for Gap Junctional Channels

  • Rhee, Seung-Keun
    • Journal of Ginseng Research
    • /
    • v.30 no.2
    • /
    • pp.64-69
    • /
    • 2006
  • Gap junctional channels, allowing rapid intercellular communication and synchronization of coupled cell activities, play crucial roles in many signaling processes, including a variety of cell activities. Consequently, a modulation of the gap junctional intercellular communication (GJIC) should be a potential pharmacological target. In the present, the GJIC of a epithelial-derived rat mammary cells (BICR-M1Rk) was assessed in the presence of ginseng saponin, by using an established method of scrape-loading dye transfer assay. The transfer of Lucifer yellow (diameter: 1.2 nm) among the neighboring BICR-M1Rk cells, in which connexin43 (Cx43) is a major gap junction channel-forming protein, was significantly retarded at a concentration of $10{\mu}g/ml$ ginseng saponin. By using both methods of RT-PCR and Western blotting, it was demonstrated that ginseng saponin modulated neither the mRNA synthesis of Cx43 nor the translational process of Cx43. This ginseng saponin-induced modification of GJIC was a similar phenomenon observed under the $\beta$-glycyrrhetinic acid treatment, a well-known gap junction channel blocker. Taken together, it is reasonable to conclude that the ginseng saponin inhibits GJIC only by modulating the gating property of gap junction channels.

The Effects of Glucagon-like Peptide-2 on the Tight Junction and Barrier Function in IPEC-J2 Cells through Phosphatidylinositol 3-kinase-Protein Kinase B-Mammalian Target of Rapamycin Signaling Pathway

  • Yu, Changsong;Jia, Gang;Deng, Qiuhong;Zhao, Hua;Chen, Xiaoling;Liu, Guangmang;Wang, Kangning
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.731-738
    • /
    • 2016
  • Glucagon-like peptide-2 (GLP-2) is important for intestinal barrier function and regulation of tight junction (TJ) proteins, but the intracellular mechanisms of action remain undefined. The purpose of this research was to determine the protective effect of GLP-2 mediated TJ and transepithelial electrical resistance (TER) in lipopolysaccharide (LPS) stressed IPEC-J2 cells and to test the hypothesis that GLP-2 regulate TJ and TER through the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway in IPEC-J2 cells. Wortmannin and LY294002 are specific inhibitors of PI3K. The results showed that $100{\mu}g/mL$ LPS stress decreased TER and TJ proteins occludin, claudin-1 and zonula occludens protein 1 (ZO-1) mRNA, proteins expressions (p<0.01) respectively. GLP-2 (100 nmol/L) promote TER and TJ proteins occludin, claudin-1, and zo-1 mRNA, proteins expressions in LPS stressed and normal IPEC-J2 cells (p<0.01) respectively. In normal cells, both wortmannin and LY294002, PI3K inhibitors, prevented the mRNA and protein expressions of Akt and mTOR increase induced by GLP-2 (p<0.01) following with the significant decreasing of occludin, claudin-1, ZO-1 mRNA and proteins expressions and TER (p<0.01). In conclusion, these results indicated that GLP-2 can promote TJ's expression and TER in LPS stressed and normal IPEC-J2 cells and GLP-2 could regulate TJ and TER through the PI3K/Akt/mTOR pathway.

The Expression Pattern of the Tight Junction Protein Occludin in the Epidermal Context When Comparing Various Physical Samples (신체 부위별 표피에서 밀착연접 단백질 중 오클루딘의 발현도 연구)

  • Kim, Ji Sook;Jang, Hyung Seok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.267-272
    • /
    • 2015
  • 'Tight junctions (TJ)' have recently been identified in the granular cell layer of the human epidermis, where they contribute to the normal adhesion between keratinocytes and to the physiologic barrier function of the epidermis. Among the TJ proteins in the epidermis, occludin is an important transmembrane protein, which is considered as a major component. The purpose of this study is to investigate whether regional variation exists in the expression of the tight junction protein occludin in normal human epidermis. Indirect immunofluorescence staining for occludin was performed with specimens taken from different areas of normal skin (4 from each of 7 different anatomical sites, including the scalp, face, posterior neck, upper arm, abdomen, lower back, and inner thigh). The degrees of the expression-intensity in each specimen were estimated with the reciprocals of positive end-point titer of occludin in an indirect immunofluorescence study. The highest degree expression-intensity of the TJ protein occludin among the different areas of normal epidermis was observed on the face and abdomen with a titer of 600 (p=0.001). The lowest intensity of expression of occludin was seen in the epidermis from the upper arm. Skin specimens from the scalp, neck, back, and leg demonstrated intermediate degrees of the expression in intensity. The expression of occludin in the skin samples obtained from different locations of the body showed a statistically significant variation. This suggests that there is a certain degree of regional variation in the expression-intensity of TJ protein 'occludin' in the human epidermis.