• Title/Summary/Keyword: Cell Cycle Stage

Search Result 263, Processing Time 0.026 seconds

Cell Viability in $G_0$-like Stationary Phase of Schizosaccharomyces pombe: Roles of Psp1/Sds23 and Ufd2

  • Jang, Young-Joo;Ji, Jae-Hoon;Chung, Kyung-Sook;Kim, Dong-Uk;Hoe, kwang-Lae;Won, Mi-Sun;Yoo, Hyang-Sook
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.110-113
    • /
    • 2005
  • Under the condition of nutritional deprivation, actively growing cells prepare to enter $G_0$-like stationary phase. Protein modification by phosphorylation/dephosphorylation or ubiqutination contributes to transfer cells from active cell cycle to dormant stage. We show here that Psp1/Sds23, which functions in association with the 20S cyclosome/APC (1) and is essential for cell cycle progression in Schizosaccharomyces pombe (2), is phosphorylated by stress-activated MAP kinase Sty1 and protein kinase A, as well as Cdc2/cyclinB, upon entry into stationary phase. Three serines at the positions 18,333 and 391 are phosphorylated and overexpression of Psp1 mutated on these sites causes cell death in stationary phase. These modifications are required for the binding of Spufd2, a S.pombe homolog of multiubiquitin chain assembly factor E4 in ubiquitin fusion degradation pathway. Deletion of Spufd2 gene led to increase cell viability in stationary phase, indicating that S. pombe Ufd2 functions to inhibit cell growth at this stage to maintain cell viability. Moreover, Psp1 enhances the multiubiquitination function of Ufd2, suggesting that Psp1 phosphorylated by sty1 and PKA kinases is associated with the Ufd2-dependent protein degradation pathway, which is linked to stress tolerance, to maintain cell viability in the $G_0$-like stationary phase.

  • PDF

Waste heat recovery of recirculated MCFC using supercritical carbon dioxide power cycle (초임계 이산화탄소 사이클을 이용한 연료 재순환 MCFC의 폐열회수)

  • Lee, Jae Yoon;Ahn, Ji Ho;Kim, Tong Seop
    • Plant Journal
    • /
    • v.15 no.2
    • /
    • pp.42-45
    • /
    • 2019
  • The molten carbonate fuel cell has a high temperature of waste heat and can constitute a bottoming cycle to increase the efficiency. Previous study used a bottoming cycle as steam turbine cycle. In this study, we are going to replace the bottoming cycle with a supercritical carbon dioxide power cycle. The system power was compared to consider replacing the bottoming cycle. As a result, the power of the supercritical carbon dioxide power cycle at the present development stage is lower than that of the steam turbine cycle, but theoretically, the power can be larger than the steam turbine cycle. If the supercritical carbon dioxide power cycle improves the isentropic efficiency of the turbine by 89%, the isentropic efficiency of the compressor by 83%, and the effectiveness of the recuperator by 0.9, the power can be same to the steam turbine cycle.

DEVELOPMENT OF HOT CELL FACILITIES FOR DEMONSTRATION OF ACP

  • You, Gil-Sung;Choung, Won-Myung;Ku, Jeong-Hoe;Cho, Il-Je;Kook, Dong-Hak;Park, Seong-Won
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.191-204
    • /
    • 2004
  • The research and development of effective management technologies of the spent fuels discharged from power reactors are an important and essential task of KAERI. In resent several years KAERI has focused on a project named "development and demonstration of the Advanced spent fuel Conditioning Process (ACP) in a laboratory scale." The Facility for ACP demonstration consists of two Hot Cells and auxiliary facilities. It is now in the final design stage and will be constructed in 2004. After construction of the facility the ACP equipments will be installed in Hot Cells. The ACP will be demonstrated by some simulated spent fuels first and then by spent fuels.

  • PDF

Effects of Cell Cycle Regulators on the Cell Cycle Synchronization of Porcine induced Pluripotent Stem Cells

  • Kwon, Dae-Jin;Hwang, In-Sul;Kwak, Tae-Uk;Yang, Hyeon;Park, Mi-Ryung;Ock, Sun-A;Oh, Keon Bong;Woo, Jae-Seok;Im, Gi-Sun;Hwang, Seongsoo
    • Development and Reproduction
    • /
    • v.21 no.1
    • /
    • pp.47-54
    • /
    • 2017
  • Unlike mouse results, cloning efficiency of nuclear transfer from porcine induced pluripotent stem cells (piPSCs) is very low. The present study was performed to investigate the effect of cell cycle inhibitors on the cell cycle synchronization of piPSCs. piPSCs were generated using combination of six human transcriptional factors under stem cell culture condition. To examine the efficiency of cell cycle synchronization, piPSCs were cultured on a matrigel coated plate with stem cell media and they were treated with staurosporine (STA, 20 nM), daidzein (DAI, $100{\mu}M$), roscovitine (ROSC, $10{\mu}M$), or olomoucine (OLO, $200{\mu}M$) for 12 h. Flow Cytometry (FACs) data showed that piPSCs in control were in G1 ($37.5{\pm}0.2%$), S ($34.0{\pm}0.6%$) and G2/M ($28.5{\pm}0.4%$). The proportion of cells at G1 in DAI group was significantly higher than that in control, while STA, ROSC and OLO treatments could not block the cell cycle of piPSCs. Both of viability and apoptosis were affected by STA and ROSC treatment, but there were no significantly differences between control and DAI groups. Real-Time qPCR and FACs results revealed that DAI treatment did not affect the expression of pluripotent gene, Oct4. In case of OLO, it did not affect both of viability and apoptosis, but Oct4 expression was significantly decreased. Our results suggest that DAI could be used for synchronizing piPSCs at G1 stage and has any deleterious effect on survival and pluripotency sustaining of piPSCs.

The Evaluation of Various Conditions in the Cryopreservation of Mouse Embryos - Rapid and Slow Method of Cryopreservation, Culture Media and Cell Stages (생쥐배아의 냉동보존에 있어서 여러 조건의 평가 - 저속 처리단계와 급속 처리단계, 배양액, 세포기)

  • Yi, Seung-Yeun;Kwon, Ju-Taek;Song, Hee-Won;Cho, Yun-Hee;Lee, Ky-Sook;Rheu, Cheul-Hee;Kim, Jong-Duk
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.2
    • /
    • pp.127-135
    • /
    • 1999
  • Cryopreservation is able to store the surplus pre-embryos for freezing and furthermore thawing and transfer in a subsequent cycle. Cryopreserving cells which are maintaining their viability are the very complex process. This study has been carried out in order to find the effects of cryopreservation steps, freezing media and embryonic stages on the rates of viability and development of cryopreserved mouse embryos. Female ICR mice ($6{\sim}8$ weeks old) were induced to superovulate by sequential intraperitoneal injection of 5 IU PMSG and 5 IU hCG 48h apart. Mouse embryos were collected according to its developmental stage after the injection of hCG. Embryos were cryopreserved not only by cryoprotectant step (1 step${\sim}$4 step) but also in a variety of media (HTF, IVF medium, D-PBS) and cell stage. The results were as follows: There is no clear advantage in these freezing media of rapid method, but 4 cell and 8 cell of slow method (2, 3, 4 step) have advantage in D-PBS. The development of embryos according to cell stage become greater in 8 cell stage. In the treatment steps of cryopreservation, the development of embryo to blastocyst was similar among rapid method, but the development of 4 cell and 8 cell embryos to blastocyst according to slow method was better than rapid method.

  • PDF

Application of HIV-1 Complementation System to Screen the Anti-AIDS Agents That Targets the Late Stage of HIV-1 Replication Cycle (바이러스 생활환의 후기 단계에 작용하는 항AIDS제의 탐색을 위한 HIV-1 Complementation System의 응용)

  • Ryu, Ji-Yoon;Choi, Soo-Young;Kim, Yung-Hi;Park, Jin-Seu
    • The Journal of Korean Society of Virology
    • /
    • v.30 no.3
    • /
    • pp.161-170
    • /
    • 2000
  • Continuous efforts are being made to find effective therapeutic agents against HIV-1, the causative agents of AIDS. In this study, we developed a cell-based assay system employing a trans-complementation for production of recombinant viruses which are capable of undergoing one round of replication in CD4+ T cells. This assay system was tested for ability to screen the agents that act at late stage of HIV-1 life cycle. The effect of a protease inhibitor on the trans-complementation assay was assessed. Recombinant HIV-1 viruses were prepared from a trans-complementation in the presence of various concentrations of protease inhibitor. Inhibition of single round infection of these recombinant viruses by protease inhibitor was observed to be a dose-dependent manner. Inhibitory effects of a protease inhibitor on HIV-1 Gag polyprotein processing by HIV-1 protease was detected at concentrations of the protease inhibitor compatible with inhibition of virus infection, confirming that the corresponding step was involved in the inhibitory mechanism of this compound. Together, these results provide evidence that a cell-based assay system established in this study can be used to screen the agents that target the late stage of HIV-1 life cycle.

  • PDF

Cell Cycle Analysis of Bovine Cultured Somatic Cells by Flow Cytometry

  • H.T. Cheong;D.J. Kwon;Park, J.Y.;J.W. Cho;Y.H. Yang;Park, T.M.;Park, C.K.;B.K. Yang;Kim, C.I.
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.69-69
    • /
    • 2001
  • The cell cycle phase in which donor nuclei exist prior to nuclear transfer is an important factor governing developmental rates of reconstituted embryos. It was suggested that quiescent G0 and cycling G1 cells could support normal development of reconstituted embryos. In a quest of optimized donor nuclei treatment prior to nuclear transfer, this study was undertaken to examine the cell cycle characteristics of bovine fetal and adult somatic cells when cultured under a variety of culture treatments and the cell cycle change with the lapse of time after trypsinization. This was archived by measuring the DNA content of cells using flow cytometry, Cultured fetal fibroblast cells, adult skin and muscle cells, and cumulus cells were divided by 3 culture treatments; 1) grown to 60-70% confluency (cycling), 2) serum starved culture, 3) culture to confluency. Trypsinized cells were fixed by 70% ethanol and stained with propidium iodide. For one experiment, trypsinized cells were resuspended in DMEM+10% FBS and incubated for 1.5, 3 and 6 h with occasional shaking before ethanol fixation. Cell cycle phases were determined by flow cytometry enabling calculation of percentages of G0+G1, S and G2+M. The majority of cells were in G0+Gl stage regardless of origin of cells. Cultures that were serum starved or cultured to confluency contained significantly (P<0.05) higher percentages of cells in G0+G1 (89.5-95.4%). For every cell lines and culture treatments, percentages of cells in existing in G0+G1 increased with decreasing of the cell size from large to small. In the serum starved and confluency groups, about 98% of small cells were in G0+G1 Serum starved culture contained higher percentages of small-sized cells (38.5-66.9%) than cycling and confluent cultures regardless of cell lines (P<0.05). After trypsinization of fetal fibroblast and adult skin cells that were serum starved and cultured to confluency, the percentages of cells in G0+G1 significantly increased by incubation for 1.5(95.7-99.5%) and 3.0 h (95.9-98.6%). The results suggest that the efficient synchronization of bovine somatic cells in G0+G1 for nuclear transfer can be established by incubation for a limited time period after trypsinization of serum starved or confluent cells.

  • PDF

Function of the pentose phosphate pathway and its key enzyme, transketolase, in the regulation of the meiotic cell cycle in oocytes

  • Kim, Yunna;Kim, Eun-Young;Seo, You-Mi;Yoon, Tae Ki;Lee, Woo-Sik;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.2
    • /
    • pp.58-67
    • /
    • 2012
  • Objective: Previously, we identified that transketolase (Tkt), an important enzyme in the pentose phosphate pathway, is highly expressed at 2 hours of spontaneous maturation in oocytes. Therefore, this study was performed to determine the function of Tkt in meiotic cell cycle regulation, especially at the point of germinal vesicle breakdown (GVBD). Methods: We evaluated the loss-of-function of Tkt by microinjecting Tkt double-stranded RNAs (dsRNAs) into germinal vesicle-stage oocytes, and the oocytes were cultured in vitro to evaluate phenotypic changes during oocyte maturation. In addition to maturation rates, meiotic spindle and chromosome rearrangements, and changes in expression of other enzymes in the pentose phosphate pathway were determined after Tkt RNA interference (RNAi). Results: Despite the complete and specific knockdown of Tkt expression, GVBD occurred and meiosis was arrested at the metaphase I (MI) stage. The arrested oocytes exhibited spindle loss, chromosomal aggregation, and declined maturation promoting factor and mitogen-activated protein kinase activities. The modified expression of two enzymes in the pentose phosphate pathway, Prps1 and Rbks, after Tkt RNAi and decreased maturation rates were amended when ribose-5-phosphate was supplemented in the culture medium, suggesting that the Tkt and pentose phosphate pathway are important for the maturation process. Conclusion: We concluded that Tkt and its associated pentose phosphate pathway play an important role in the MI-MII transition of the oocytes' meiotic cell cycle, but not in the process of GVBD.

Studies on the cloning of calves by nuclear transplantation II. Efficient embryo cloning under oocyte activation, cell cycle regulation of donor nuclei and optimal culture conditions (핵이식을 이용한 복제송아지 생산에 관한 연구 II. 효율적인 복제수정란 생산을 위한 난자의 활성화, 공여핵의 세포주기조절 및 적정 배양조건)

  • Hwang, Woo-suk;Roh, Sang-ho;Lee, Byeong-chun
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.3
    • /
    • pp.639-645
    • /
    • 1997
  • The objectives of the present study were improvements in the efficiency of developmental rates to morula and blastocyst stages to produce a large number of genetically identical nuclear transplanted embryos. The oocytes collected from slaughterhouse ovaries were matured 24h in TCM199+10% FBS and exposed to $39^{\circ}C$ or room temperature to allow cytoplasmic maturation and gain activation competence. Donor embryos were treated for 12h with $10{\mu}g/ml$ nocodazole or $0.05{\mu}g/ml$ demicolcine to synchronize the cell cycle stage at 26h after the onset of culture. The blastomeres and recipient oocytes were fused by electrofusion. The cloned embryos were then cultured in various conditions to allow further development. In the treatment of oocyte activation and cell cycle regulation of donor nuclei, the room temperature exposure and nocodazole treatment group had significant effect on the developmental rates to morula/blastocyst(21.7% vs 12.1~16.7%), but had no significant effect on the fusion rates between donor blastomeres and recipient oocytes. The developmental rates of bovine nuclear transplanted embryos appeared to be higher significantly in mTALP medium under 5% $O_2$ condition and in TCM199 with bovine oviduct epithelial cell under 20% $O_2$ condition(22.2%) than other groups. In embryo transfer of nuclear transplanted embryos, there were no significant differences in calving rates between the use of excellent and good grade donor embryos.

  • PDF