• Title/Summary/Keyword: Cell Communication

Search Result 1,575, Processing Time 0.03 seconds

Method of DNC System Communication for FMS Construction (FMS 구축을 위한 DNC 시스템 통신기법)

  • 이석희;배용환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.805-815
    • /
    • 1994
  • The development of automatic production systems has a trend toward Computer Integrated Manufacturing System(CIMS) in recent years. In hardware configuration, CIMS are composed of intelligent CAD/CAM work stations, multifunction CNC machining centers including material handling systems. The DNC systems present the key element of automation hierarchy in a FMS. A DNC system is one which connects a number of numerically-controlled machines to a common memory in a digital computer for part program storage with provision for on-demand distribution of part program data to machines using communication in hierarchical structure of central computer, control computer and cell controller. This paper describes the development of Behind-the-Tape-Reader(BTR) type DNC system using CYBER 180-830 as a central computer and IBM PC-386 cell control computer and NC lathe with FANUC 5T NC controller. In this system, the connection between central computer and cell control computer is done via RS-232C serial interface board, and the connection between cell control computer and FANUC 5T controller is done via parallel interface board. The software consists of two module, central computer communication module for NC program downloading and status uploading, NC machine running module for NC operating.

Breast Cancer Prevention Information Seeking Behavior and Interest on Cell Phone and Text Use: a Cross-sectional Study in Malaysia

  • Akhtari-Zavare, Mehrnoosh;Ghanbari-Baghestan, Abbas;Latiff, Latiffah A.;Khaniki, Hadi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1337-1341
    • /
    • 2015
  • Background: Breast cancer is the most common cancer and the second principal cause of cancer deaths among women worldwide, including Malaysia. This study focused on media choice and attempted to determine the communication channels mostly used and preferred by women in seeking information and knowledge about breast cancer. Materials and Methods: A cross sectional study was carried out to examine the breast cancer prevention information seeking behavior among 450 students at one private university in Malaysia. Results: The mean age of respondents was $25{\pm}4.3years$. Common interpersonal information sources were doctors, friends, and nurses and common channel information sources were television, brochure, and internet. Overall, 89.9% used cell phones, 46.1% had an interest in receiving cell phone breast cancer prevention messages, 73.9% used text messaging, and 36.7% had an interest in receiving text breast cancer prevention messages. Bivariate analysis revealed significant differences among age, eduation, nationality and use of cell phones. Conclusions: Assessment of health information seeking behavior is important for community health educators to target populations for program development.

Technology Trends and Prospects of Silicon Solar Cells (실리콘 태양전지의 기술현황 및 전망)

  • Park, Cheolmin;Cho, Jaehyun;Lee, Youngseok;Park, Jinjoo;Ju, Minkyu;Lee, Youn-Jung;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2013
  • The current solar cell industry is experiencing a temporary plateau due to a sluggish economy and oversupply. It is expected that the solar industry can see similar growth to that of the recent past by overcoming the current situation, as there is growing demand globally for solar energy. The current situation led to restructuring of the world's solar industry, and domestic firms will need to have competitiveness through strategic approaches and proprietary technology to survive in the global solar market. Crystalline and amorphous silicon based solar cells have led the solar industry and occupied half or more of the market thus far. They will do so in the future PV market as well by playing a pivotal role in the solar industry. In this paper, the current status and prospects of silicon based solar cells, from materials to comprehensive and high efficiency technology that can emerge in the future, are discussed.

Reduction of Outage Probability due to Handover by Mitigating Inter-cell Interference in Long-Term Evolution Networks

  • Hussein, Yaseein Soubhi;Ali, Borhanuddin Mohd;Rasid, Mohd Fadlee A.;Sali, Aduwati
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.554-563
    • /
    • 2014
  • The burgeoning growth of real-time applications, such as interactive video and VoIP, places a heavy demand for a high data rate and guarantee of QoS from a network. This is being addressed by fourth generation networks such as Long-Term Evolution (LTE). But, the mobility of user equipment that needs to be handed over to a new evolved node base-station (eNB) while maintaining connectivity with high data rates poses a significant challenge that needs to be addressed. Handover (HO) normally takes place at cell borders, which normally suffers high interference. This inter-cell interference (ICI) can affect HO procedures, as well as reduce throughput. In this paper, soft frequency reuse (SFR) and multiple preparations (MP), so-called SFRAMP, are proposed to provide a seamless and fast handover with high throughput by keeping the ICI low. Simulation results using LTE-Sim show that the outage probability and delay are reduced by 24.4% and 11.9%, respectively, over the hard handover method - quite a significant result.

PSO-based Resource Allocation in Software-Defined Heterogeneous Cellular Networks

  • Gong, Wenrong;Pang, Lihua;Wang, Jing;Xia, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2243-2257
    • /
    • 2019
  • A heterogeneous cellular network (HCN) is useful to increase the spectral and energy efficiency of wireless networks and to reduce the traffic load from the macro cell. The performance of the secondary user equipment (SUE) is affected by interference from the eNodeB (eNB) in a macro cell. To decrease the interference between the macro cell and the small cell, allocating resources properly is essential to an HCN. This study considers the scenario of a software-defined heterogeneous cellular network and performs the resource allocation process. First, we show the system model of HCN and formulate the optimization problem. The optimization problem is a complex process including power and frequency resource allocation, which imposes an extremely high complexity to the HCN. Therefore, a hierarchical resource allocation scheme is proposed, which including subchannel selection and a particle swarm optimization (PSO)-based power allocation algorithm. Simulation results show that the proposed hierarchical scheme is effective in improving the system capacity and energy efficiency.

The Study of N-type Crystalline Silicon Solar Cells by PC1D

  • Yi, Junsin;Jung, Junhee;Lau, Meng How
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.287.2-287.2
    • /
    • 2014
  • PV (photovoltaic) has becoming an important industry to invest due to its high robustness and require very little maintenance which goes a long time. Solar cell fabrication involves a few critical processes such as doping to make the N-type and P-type silicon, contact metallization, surface texturization, and anti-reflection coatings. Anti-reflection coating is a kind of surface passivation which ensures the stability, and efficiency of the solar cell. Thus, I will focus on the changes happen to the solar cell due to the reflectance and anti-reflection coating by PC1D. By using the PC1D (solar cell simulation program), I would analysis the effect of reflectance on the N-type cell. At last I will conclude the result regarding what I learned throughout this experiment.

  • PDF

Detecting cell cycle-regulated genes using Self-Organizing Maps with statistical Phase Synchronization (SOMPS) algorithm

  • Kim, Chang Sik;Tcha, Hong Joon;Bae, Cheol-Soo;Kim, Moon-Hwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.2
    • /
    • pp.39-50
    • /
    • 2008
  • Developing computational methods for identifying cell cycle-regulated genes has been one of important topics in systems biology. Most of previous methods consider the periodic characteristics of expression signals to identify the cell cycle-regulated genes. However, we assume that cell cycle-regulated genes are relatively active having relatively many interactions with each other based on the underlying cellular network. Thus, we are motivated to apply the theory of multivariate phase synchronization to the cell cycle expression analysis. In this study, we apply the method known as "Self-Organizing Maps with statistical Phase Synchronization (SOMPS)", which is the combination of self-organizing map and multivariate phase synchronization, producing several subsets of genes that are expected to have interactions with each other in their subset (Kim, 2008). Our evaluation experiments show that the SOMPS algorithm is able to detect cell cycle-regulated genes as much as one of recently reported method that performs better than most existing methods.

  • PDF

Cell ID Detection and SNR Estimation Algorithms Robust to Noise (잡음에 강인한 셀 아이디 검출 및 SNR 추정 알고리즘)

  • Lee, Chong-Hyun;Bae, Jin-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.139-145
    • /
    • 2010
  • In this paper, we propose robust cell ID detection algorithm and SNR estimation algorithm applicable to mobile base station, which can be operated independently. The proposed cell ID estimation uses signal subspace to estimate cell IDs used in cell. The proposed SNR estimation algorithm uses number of noise subspace vectors and the corresponding eigen-vectors. Through the computer simulations, we showed that performance of the proposed cell ID detection and SNR estimation algorithms are superior to existing correlation based algorithms. Also we showed that the proposed algorithm is suitable to fast moving channel in high background noise and strong interference signal.

A Performance Analysis of the Virtual CellSystem for Mobile Hosts (이동 호스트를 위한 가상 셀 시스템의 성능 분석)

  • Lim, Kyung-Shik
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2627-2640
    • /
    • 1998
  • In this paper, we analyze the performance of the virtual cell system[1] for the transmission of IP datagrams in mobile computer communications. A virtual cell consistsof a group of physical cells shose base stationsl are implemented b recote bridges and interconnected via high speed datagram packet switched networks. Host mobility is supported at the data link layer using the distributed hierachical location information of mobile hosts. Given mobility and communication ptems among physical cells, the problem of deploying virtual cells is equivalent to the optimization cost for the entire system where interclster communication is more expesive than intracluster communication[2]. Once an iptimal partitionof disjoint clusters is obtained, we deploy the virtual cell system according to the topology of the optimal partition such that each virtual cell correspods to a cluser. To analyze the performance of the virtual cell system, we adopt a BCMP open multipel class queueing network model. In addition to mobility and communication patterns, among physical cells, the topology of the virtual cell system is used to determine service transition probabilities of the queueing network model. With various system parameters, we conduct interesting sensitivity analyses to determine network design tradeoffs. The first application of the proposed model is to determine an adequate network bandwidth for base station networking such that the networks would not become an bottleneck. We also evaluate the network vlilization and system response time due to various types of messages. For instance, when the mobile hosts begin moving fast, the migration rate will be increased. This results of the performance analysis provide a good evidence in demonsratc the sysem effciency under different assumptions of mobility and communication patterns.

  • PDF

Analysis of Small Cell Technology Application for Performance Improvement in Simulation-based 5G Communication Environment (시뮬레이션 기반 5G 통신 환경에서 성능향상을 위한 스몰셀 기술 적용 분석)

  • Kim, Yoon Hwan;Kim, Tae Yeun;Lee, Dae Young;Bae, Sang Hyun
    • Smart Media Journal
    • /
    • v.9 no.2
    • /
    • pp.16-21
    • /
    • 2020
  • Recently, mobile traffic is increasing exponentially as major traffic is transferred to IoT and visual media data in the dissemination of mobile communication terminals and contents use. In order to overcome the limitations of the existing LTE system, 5G mobile communication technology (5G) is a technology that meets 1000 times data traffic capacity, 4G LTE system acceptance, low latency, high energy efficiency, and high cost compared to 4G LTE system. The path loss due to the use of the frequency domain is very high, so it may be difficult to provide a service compared to the existing 4G LTE system. To overcome these shortcomings, various techniques are under study. In this paper, small cell technology is introduced to improve the system performance of 5G mobile communication systems. The performance is analyzed by comparing the results of small cell technology application, macro communication and small cell communication, and the results of the proposed algorithm application for power control. The analysis results show that the use of small cell technology in the 5th generation mobile communication system can significantly reduce the shadow area and reduce the millimeter wave path loss problem.