• Title/Summary/Keyword: Cell Characterization

Search Result 1,780, Processing Time 0.032 seconds

PEMFC Characterization Study by in-situ Analysis Method (In-Situ 분석법에 의한 연료전지 특성 연구)

  • Kim, Young-Min;Lee, Jong-Hyun;Im, Se-Joon;Ahn, Byung-Ki;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.208-215
    • /
    • 2009
  • PEMFC stack power output is needed to be around 100 kW to meet the requirements of automotive application and scaling-up the active area of the stack cells will allow a higher power. In the case of scaling-up the active area of cells, it is difficult to obtain uniform in-plane internal conditions such as temperature, relative humidity and stoichiometry of the feed gas. These ununiformity with the location in the cell would affect both the performance and durability of the stack, so it is important to understand phenomena in the cell for improving them. In this study, the current density, electrochemical resistance and performance distribution measurement was performed to understand the ununiformity in a single cell using in-situ method; (1) Current Density Distribution (CDD) Device and (2) Segmented Cell Fixture. The influence of location of feed gas on the performance of a single cell was experimentally measured and discussed by using a segmented single cell which was composed of 8 compartments. The correlation between the location and performance in a single cell was discussed by these two tools and it was extended between the local characterization and the durability in a MEA by comparing the used cell with a fresh one. It was also studied in terms of electrochemistry by Electrochemical Impedance Spectroscopy.

Characterization of Commercial Membranes for Non-aqueous Vanadium Redox Flow Battery (비수계 바나듐 레독스 흐름 전지를 위한 상용 멤브레인의 특성분석)

  • Sung, Ki-Won;Shin, Sung-Hee;Moon, Seung-Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.615-621
    • /
    • 2013
  • Membrane characterization methods for aqueous redox flow batteries aqueous RFBs were modified for non-aqueous RFBs. The modified characterization methods, such as ion exchange capacity, transport number, permeability and single cell test, were carried out to evaluate commercial membranes in non-aqueous electrolyte. It was found that columbic efficiency and energy efficiency in a single cell test were dependent on the ion selectivity of commercial anion exchange membranes. Neosepta AHA anion exchange membrane showed the anion transport number of 0.81, which is a relatively low ion selectivity in non-aqueous electrolyte, however, exhibited 92% of coulombic efficiency and 86% of energy efficiency in a single cell test. It was also found that a porous membrane without ion selectivity is suitable for a non-aqueous redox flow battery at a high current density.

Molecular Characterization of Porcine DNA Methyltransferase I

  • Lee, Yu-Youn;Kang, Hye-Young;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.34 no.4
    • /
    • pp.283-288
    • /
    • 2010
  • During normal early embryonic development in mammals, the global pattern of genomic DNA methylation undergoes marked. changes. The level of methylation is high in male and female gametes. Thus, we cloned the cDNA of the porcine DNA methyltransferase 1 (Dnmt1) gene to promote the efficiency of the generation of porcine clones. In this study, porcine Dnmt1 cDNA was sequenced, and Dnmt1 mRNA expression was detected by reverse transcription-polymerase reaction (RT-PCR) in porcine tissues during embryonic development. The porcine Dnmt1 cDNA sequence showed more homology with that of bovine than human, mouse, and rat. The complete sequence of porcine Dnmt1 cDNA was 4,774-bp long and consisted of an open reading frame encoding a protein of 1611 amino acids. The amino acid sequence of porcine DNMT1 showed significant homology with those of bovine (91%), human (88%), rat (76%), and mouse (75%) Dnmt1. The expression of porcine Dnmt1 mRNA was detected during porcine embryogenesis. The mRNA was detected at stages of porcine preimplantation development (1-cell, 2-cell, 4-cell, 8-cell, morula, and blastocyst stages). It was also abundantly expressed in tissues (lung, ovary, kidney and somatic cells). Further investigations are necessary to understand the complex links between methyltransferase 1 and the transcriptional activity in cloned porcine tissues.

Visualization of Phytophthora palmivora Infection in Oil Palm Leaflets with Fluorescent Proteins and Cell Viability Markers

  • Ochoa, Juan C.;Herrera, Mariana;Navia, Monica;Romero, Hernan Mauricio
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.19-31
    • /
    • 2019
  • Bud rot (BR) is the most devastating disease affecting oil palm (Elaeis guineensis) crops in Colombia. Its causal agent, Phytophthora palmivora, initiates the infection in immature oil palm leaflets producing necrotic lesions, followed by colonization of opportunistic necrotrophs, which increases disease damage. To improve the characterization of the disease, we transformed P. palmivora using Agrobacterium tumefaciens-mediated transformation (ATMT) to include the fluorescent proteins CFP-SKL (peroxisomal localization), eGFP and mRFP1 (cytoplasmic localization). The stability of some transformants was confirmed by Southern blot analysis and single zoospore cultures; additionally, virulence and in vitro growth were compared to the wild-type isolate to select transformants with the greatest resemblance to the WT isolate. GFP-tagged P. palmivora was useful to identify all of the infective structures that are commonly formed by hemibiotrophic oomycetes, including apoplastic colonization and haustorium formation. Finally, we detected cell death responses associated with immature oil palm tissues that showed reduced susceptibility to P. palmivora infection, indicating that these tissues could exhibit age-related resistance. The aim of this research is to improve the characterization of the initial disease stages and generate cell biology tools that may be useful for developing methodologies for early identification of oil palm materials resistant or susceptible to BR.

Functional characterization of the distal long arm of laminin: Characterization of Cell- and heparin binding activities

  • Sung, Uhna;O′Rear, Julian J.;Yurchenco, Peter D.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.107-113
    • /
    • 1995
  • Basement membrane laminin is a multidomain glycoprotein that interacts with itself, heparin and cells. The distal long arm plays major cell and heparin interactive roles. The long arm consists of three subunits (A, B1, B2) joined in a coiled-coil rod attached to a terminal A chain globule (G). The globule is in turn subdivided into five subdomains (Gl-5). In order to analyze the functions of this region, recombinant G domains (rG, rAiG, rG5, rGΔ2980-3028) were expressed in Sf9 insect cells using a baculovirus expression vector. A hybrid molecule (B-rAiG), consisting of recombinant A chain(rAiG) and the authentic B chains (E8-B)was assembled in vitro. The intercalation of rAiG into E8-B chains suppressed a heparin binding activity identified in subdomain Gl-2. By the peptide napping and ligand blotting, the relative affinity of each subeomain to heparin was assigned as Gl> G2= G4> G5> G3, such that G1 bound strongly and G3 not at all. The active heparin binding site of G domain in intact laminin appears to be located in G4 and proximal G5. Cell binding was examined using fibrosarcoma Cells. Cells adhered to E8, B-rAiG, rAiG and rG, did not bind on denatured substrates, poorly bound to the mixture of E8-B and rG. Anti-${\alpha}$6 and anti-${\beta}$1 integrin subunit separately blocked cell adhesion on E8 and B-rAiG, but not on rAiG. Heparin inhibited cell adhesion on rAiG, partially on B-rAiG, and not on E8. In conclusion, 1) There are active and cryptic cell and heparin binding activities in G domain. 2) Triple-helix assembly inactivates cell and heparin binding activities and restores u6131 dependent cell binding activities.

  • PDF

Cross-reactivity of Human Polyclonal Anti-GLUT1 Antisera with the Endogenous Insect Cell Glucose Transporters and the Baculovirus-expressed GLUT1

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.7 no.4
    • /
    • pp.161-166
    • /
    • 2001
  • Most mammalian cells take up glucose by passive transport proteins in the plasma membranes. The best known of these proteins is the human erythrocyte glucose transporter, GLUT1. High levels of heterologous expression far the transporter are necessary for the investigation of its three-dimensional structure by crystallization. To achieve this, the baculovirus expression system has become popular choice. However, Spodoptera frugiperda Clone 9 (Sf9) cells, which are commonly employed as the host permissive cell line to support baculovirus replication and protein synthesis, grow well on TC-100 medium that contains 0.1% D-glucose as the major carbon source, suggesting the presence of endogenous glucose transporters. Furthermore, very little is known of the endogenous transporters properties of Sf9 cells. Therefore, human GLUT1 antibodies would play an important role for characterization of the GLUT1 expressed in insect cell. However, the successful use of such antibodies for characterization of GLUT1 expression m insect cells relies upon their specificity for the human protein and lack of cross-reaction with endogenous transporters. It is therefore important to determine the potential cross-reactivity of the antibodies with the endogenous insect cell glucose transporters. In the present study, the potential cross-reactivity of the human GLUT1 antibodies with the endogenous insect cell glucose transporters was examined by Western blotting. Neither the antibodies against intact GLUT1 nor those against the C-terminus labelled any band migrating in the region expected fur a protein of M$_r$ comparable to GLUT1, whereas these antibodies specifically recognized the human GLUT1. Specificity of the human GLUT1 antibodies tested was also shown by cross-reaction with the GLUT1 expressed in insect cells. In addition, the insect cell glucose transporter was found to have very low affinity for cytochalasin B, a potent inhibitor of human erythrocyte glucose transporter.

  • PDF

Dissecting Cellular Heterogeneity Using Single-Cell RNA Sequencing

  • Choi, Yoon Ha;Kim, Jong Kyoung
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.189-199
    • /
    • 2019
  • Cell-to-cell variability in gene expression exists even in a homogeneous population of cells. Dissecting such cellular heterogeneity within a biological system is a prerequisite for understanding how a biological system is developed, homeostatically regulated, and responds to external perturbations. Single-cell RNA sequencing (scRNA-seq) allows the quantitative and unbiased characterization of cellular heterogeneity by providing genome-wide molecular profiles from tens of thousands of individual cells. A major question in analyzing scRNA-seq data is how to account for the observed cell-to-cell variability. In this review, we provide an overview of scRNA-seq protocols, computational approaches for dissecting cellular heterogeneity, and future directions of single-cell transcriptomic analysis.

Characterization of Acharan Sulfate Binding Proteins in Blood Plasma

  • Lee, In-Sun;Joo, Eun-Ji;Choi, Hyung-Seok;Hahn, Bum-Soo;Kim, Yeong-Shik
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.211.2-211.2
    • /
    • 2003
  • Glycosaminolycans (GAGs). such as heparin and heparan sulfate, are highly charged molecules and are of great biological importance. Protein-GAGs interactions play prominent roles in cell-cell recognition and cell growth. Acharan sulfate (AS), isolated from the giant African snail Achatina fulica, is a novel member of glycosaminoglycan families. It showed antitumor activity by the inhibition of angiogenesis. (omitted)

  • PDF

Characterization of Acharan Sulfate Binding Proteins in Murine Lewis Lung Carcinoma Cell

  • Joo, Eun-Ji;Hahn, Bum-Soo;Kim, Yeong-Shik
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.150.2-151
    • /
    • 2003
  • We have focused on various biological activities of acharan sulfate (AS) isolated from the giant African snail Achatina fulica. In a previous study, AS showed antiangiogenic and immunomodulating activity. We also investigated antitumor activity of AS. In vitro AS had no cytotoxicity within 0 to 200 ug/ml in tumor cells such as Lewis lung carcinoma(LLC) , KM1214 (human colon cancer cell) and Caki-1 (human kidney cancer cell) by both MTT and SRB assay. In vivo AS was used to treat C57BL/6 mice bearing LLC by subscutaneous injection. (omitted)

  • PDF