• Title/Summary/Keyword: Cell Broadcasting

Search Result 137, Processing Time 0.021 seconds

Design of Solar Cell Cooling System Using Convection Phenomena

  • Lee, Jae-hyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.123-128
    • /
    • 2020
  • We constructed a cooling system for solar cells using convection phenomena and investigated its cooling performance. The cooling system didn't need any driving power or water resources. The convection cooler manufactured with a right-triangle shape of an air duct was attached to the rear of the solar cell to confirm that cooling was performed using convection phenomena. When the ratio of duct width to attachment surface width was 3:7, and the ratio of entrance height and exit height of duct was 5:1, it showed the best cooling performance. Comparative experiments with solar cells without convection cooler showed that cooling effects from 16.5℃ to 20.9℃ occurred after 40 minutes exposed to the 1300W Xenon lamp condition.

Power Efficient Cell Searching Scheme for Handover in DVB-H System (DVB-H시스템에서 핸드오버를 위한 전력 효율적인 셀 탐색 기법)

  • Park, Hyung-Kun;Cho, Jae-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.66-68
    • /
    • 2006
  • DVB-H (Digital Video Broadcasting for Handhold) is a new standard, currently being developed, which defines mobile enhancements for the DVB-T (DVB-Terrestrial) standard. For the reception of service via mobile handhold devices, seamless mobility and power saving are essential requirements of DVB-H. For seamless handover, the receiver should monitor neighboring cells and it increases the power consumption. And so, power efficient handover scheme to support both mobility and power saving is required. In this paper, we propose cell searching scheme to reduce power consumption by reducing the number of frequency scanning during the handover. Through the numerical evaluation, we analyzethe performance of handover schemes.

  • PDF

Blind Channel Estimation based on Hadamard Matrix Interstream Transmission for Multi-Cell MIMO Networks (다중 셀 MIMO 네트워크를 위한 Hadamard 행렬 Interstream 전송 기반 Blind 채널 추정)

  • Yang, Jae-Seung;Hanif, Mohammad Abu;Park, Ju-Yong;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.119-125
    • /
    • 2015
  • In this paper, we introduce a Hadamard matrix interstream transmission based blind channel estimation for multi-cells multiple-input and multiple-output (MIMO) networks. The proposed scheme is based on a network with mobile stations (MS) which are deployed with multi cells. We assume that the MS have the signals from both cells. The signal from near cell are considered as desired signal and the signals from the other cells are interference signal. Since the channel is blind, so that we transmit Hadamard matrix pattern pilot stream to estimate the channel; that gives easier and fast channel estimation for large scale MIMO channel. The computation of Hadamard based system takes only complex additions, and thus the complexity of which is much lower than the scheme with Fourier transform since complex multiplications are not needed. The numerical analysis will give perfection of proposed channel estimation.

Road Extraction by the Orientation Perception of the Isolated Connected-Components (고립 연결-성분의 방향성 인지에 의한 도로 영역 추출)

  • Lee, Woo-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • Road identification is the important task for extracting a road region from the high-resolution satellite images, when the road candidates is extracted by the pre-processing tasks using a binarization, noise removal, and color processing. Therefore, we propose a noble approach for identifying a road using the orientation-selective spatial filters, which is motivated by a computational model of neuron cells found in the primary visual cortex. In our approach, after the neuron cell typed spatial filters is applied to the isolated connected-labeling road candidate regions, proposed method identifies the region of perceiving the strong orientation feature with the real road region. To evaluate the effectiveness of the proposed method, the accuracy&error ratio in the confusion matrix was measured from road candidates including road and non-road class. As a result, the proposed method shows the more than 92% accuracy.

Outage Performance of Uplink NOMA Systems with CDF Scheduling (CDF 스케쥴링을 적용한 상향링크 NOMA 시스템의 오수신 성능)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.37-42
    • /
    • 2021
  • NOMA (Non-orthogonal multiple Access) system has been focused on the next generation cellular system for higher spectral efficiency. However, this requires user scheduling as the NOMA system is a multi-user system which accesses simultaneously. There are two representative scheduling schemes, proportionate scheduling (FP) and cumulative distribution function (CFD) scheduling. The PF scheduling is applied, the cell edge user is hard to obtain a transmit opportunity. Recently, CDF scheduling is obviously noted that it offers the same possibility of transmission for a user regardless of the location in a cell. We consider an uplink NOMA system with CDF scheduling, and obtain the channel access probabilities, the outage probabilities of the system with different number of users and different kinds of weights through simulation. The results indicate that the likelihood of each user accessing the channel is the same and the probability of failure decreases as the number of users increases. We found that the effect of the probability of failure is negligible as the weight of the cell edge user increases.

UAV Path Planning based on Deep Reinforcement Learning using Cell Decomposition Algorithm (셀 분해 알고리즘을 활용한 심층 강화학습 기반 무인 항공기 경로 계획)

  • Kyoung-Hun Kim;Byungsun Hwang;Joonho Seon;Soo-Hyun Kim;Jin-Young Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.15-20
    • /
    • 2024
  • Path planning for unmanned aerial vehicles (UAV) is crucial in avoiding collisions with obstacles in complex environments that include both static and dynamic obstacles. Path planning algorithms like RRT and A* are effectively handle static obstacle avoidance but have limitations with increasing computational complexity in high-dimensional environments. Reinforcement learning-based algorithms can accommodate complex environments, but like traditional path planning algorithms, they struggle with training complexity and convergence in higher-dimensional environment. In this paper, we proposed a reinforcement learning model utilizing a cell decomposition algorithm. The proposed model reduces the complexity of the environment by decomposing the learning environment in detail, and improves the obstacle avoidance performance by establishing the valid action of the agent. This solves the exploration problem of reinforcement learning and improves the convergence of learning. Simulation results show that the proposed model improves learning speed and efficient path planning compared to reinforcement learning models in general environments.

Configuration of Fuel Cell Power Generation System through Power Conversion Device Design (전력변환장치 설계를 통한 연료전지 발전시스템 구성)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.129-134
    • /
    • 2021
  • Recently, the demand for electricity is gradually increasing due to the rapid industrial development and the improvement of living standards. In the case of Korea, which is highly dependent on fossil fuels due to such a surge in electricity demand, reduction and freezing of greenhouse gas emissions due to international environmental regulations will immediately lead to a contraction in industrial activities. Accordingly, there are many difficulties in competition with advanced countries that want to link the environment with the country's industrial production activities, and the development of alternative energy as a countermeasure is of great interest around the world. Among these new power generation methods, small-scale power generation facilities with relatively small capacity include photovoltaic generation, wind power generation, and fuel cell generation. Among them, the fuel cell attracts the most attention in consideration of continuous operation, high power generation efficiency, and long-term durability, which are important factors for practical use. Therefore, in this paper, the fuel cell power generation system was researched and constructed by designing the power conversion circuit necessary to finally obtain the AC power used in our daily life by using the DC power generated from the fuel cell as an input.

Technology Development of Entry-Level MiC Smart Photovoltaic System based on SOC (SoC 기반 보급형 MiC 스마트 태양광발전시스템 기술개발)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.129-134
    • /
    • 2020
  • Moisture infiltration inside the solar cell module, filling of EVA sheet, melting of the frame seal, and deterioration of power generation performance in the module one year after installation are occurring. Whitening phenomenon, electrode corrosion phenomenon, and dielectric breakdown phenomenon are appearing in solar cell module installed in Korea before 5-7 years, leading to deterioration of power generation performance, and big problems for long-term reliability and long life technology are emerging. Therefore, in order to solve these problems, the development of a micro inverter (MiCrco Inverter Converter, MiC) including the function of securing the durability of the solar cell module and monitoring the aging progress and the solar cell based on the monitoring data from the MiC smart monitoring programs have been proposed to determine the aging of modules. In addition, in order to become a highly efficient solar smart monitoring system through systematic operation management through IT convergence with MiC that has enhanced monitoring function of solar cell module, SoC(System On Chip) in micro inverter is the environment for solar cell module. There is a demand for functions that can detect information in a complex manner and perform communication and control when necessary. Based on these requirements, this paper aims to develop SoC-based low-cost MiC smart photovoltaic system technology.

A Study on the Development of H2 Fuel Cell Education Platform: Meta-Fuelcell (연료전지 교육 플랫폼 Meta-Fuelcell 개발에 관한 연구)

  • Duong, Thuy Trang;Gwak, Kyung-Min;Shin, Hyun-Jun;Rho, Young-J.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.29-35
    • /
    • 2022
  • This paper proposes a fuel cell education framework installed on a Metaverse environment, which is to reduce the burden of education costs and improve the effect of education or learning. This Meta-Fuel cell platform utilizes the Unity 3D Web and enables not only theoretical education but also hands-on training. The platform was designed and developed to accommodate a variety of unit education contents, such as ppt documents, videos, etc. The platform, therdore, integrates ppt and video demonstrations for theoretical education, as well as software content "STACK-Up" for hands-on training. Theoretical education section provides specialized liberal arts knowledge on hydrogen, including renewable energy, hydrogen economy, and fuel cells. The software "STACK-Up" provides a hands-on practice on assembling the stack parts. Stack is the very core component of fuel cells. The Meta-Fuelcell platform improves the limitations of face-to-face education. It provides educators with the opportunities of non-face-to-face education without restrictions such as educational place, time, and occupancy. On the other hand, learners can choose educational themes, order, etc. It provides educators and learners with interesting experiences to be active in the metaverse space. This platform is being applied experimentally to a education project which is to develop advanced manpower in the fuel cell industry. Its improvement is in progress.

The introductory study for MIMO techniques over satellite systems

  • Kang, Yeon-Su;Kang, Kun-Suk;Ahn, Do-Seob
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.80-84
    • /
    • 2007
  • In this paper, the introductory study of the multi input multi output (MIMO) techniques for satellite communication systems is presented. Because of the advantage of wide coverage of satellite, it has been considered for broadcasting services and fill-in services. On the other hand, state of the art multi input multi output (MIMO) techniques such as space time code (STC) and spatial multiplexing (SM) makes the terrestrial system increase link performance and their coverage, and also increase the link throughput. For these regard, in order to satisfy the requirements of the next generation communications and coexists with terrestrial systems harmoniously, the studying about satellite MIMO techniques is necessary. In this paper, we introduce some system model and scenarios to apply MIMO technique to intermediate module repeater (IMR). The possibility of these techniques and technical requirements are also considered. Especially, Space time code is used to enhance IMRs coverage and increase the link performance, and space time multiplexing is utilized to multiplex satellite broadcasting signals with local broadcasting signal in IMR cell.

  • PDF