• 제목/요약/키워드: Celestial Spherical Coordinate

검색결과 2건 처리시간 0.02초

자이로스코프 위치시스템과 지북시스템 (The Gyroscope Positioning and North Finding System)

  • 박석주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.291-294
    • /
    • 2004
  • There are many position fixing systems in the world from ancient times. But the principles are to compare the position to want to know with the known position already. The position finding system which is not restricted by weather condition and/or electronic apparatus has been sought. The best system is the GPS as far. But the system has the fatal faults as follows; 1. to depend on satellite's accuracy, 2. not to use underwater. This paper is to investigate theoretically position fixing and north finding by using free gyroscope. This paper introduce a position fixing and north finding method by measuring inclination of 2 free gyroscopes. And this system does not depend on the weather condition and underwater condition. What is more, it could use on the planets, if the gravity exits.

  • PDF

ANALYSIS OF THE EFFECT OF UTI-UTC TO HIGH PRECISION ORBIT PROPAGATION

  • Shin, Dong-Seok;Kwak, Sung-Hee;Kim, Tag-Gon
    • Journal of Astronomy and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.159-166
    • /
    • 1999
  • As the spatial resolution of remote sensing satellites becomes higher, very accurate determination of the position of a LEO (Low Earth Orbit) satellite is demanding more than ever. Non-symmetric Earth gravity is the major perturbation force to LEO satellites. Since the orbit propagation is performed in the celestial frame while Earth gravity is defined in the terrestrial frame, it is required to convert the coordinates of the satellite from one to the other accurately. Unless the coordinate conversion between the two frames is performed accurately the orbit propagation calculates incorrect Earth gravitational force at a specific time instant, and hence, causes errors in orbit prediction. The coordinate conversion between the two frames involves precession, nutation, Earth rotation and polar motion. Among these factors, unpredictability and uncertainty of Earth rotation, called UTI-UTC, is the largest error source. In this paper, the effect of UTI-UTC on the accuracy of the LEO propagation is introduced, tested and analzed. Considering the maximum unpredictability of UTI-UTC, 0.9 seconds, the meaningful order of non-spherical Earth harmonic functions is derived.

  • PDF