• 제목/요약/키워드: Ceiling System

검색결과 353건 처리시간 0.024초

내진 천장시스템의 실규모 진동대 실험 및 해석 (Full-Scale Shaking Table Test and Analysis of Seismic Ceiling Systems)

  • 김호연;최용수;심재일;조창근
    • 한국공간구조학회논문집
    • /
    • 제18권1호
    • /
    • pp.135-143
    • /
    • 2018
  • In the current research, a seismic ceiling system as one of non-structural elements in buildings has been developed by applying newly designed vertical hanger clips combined with M-bar channel clips. In order to evaluate the seismic performance of the developed system, full-scale shaking table tests of one story frame structure with the conventional ceiling system or the developed seismic ceiling system were performed with time-history responses under earthquake loads. The developed system was also evaluated by the time-history dynamic analysis. From seismic test and analysis, it was shown that the developed seismic ceiling system could give improved seismic performances to minimize displacements and damages of ceiling systems as well as enhance seismic safety of the ceiling system.

내화천장구조 적용을 통한 석고보드 활용 확대에 관한 연구 (A Study on the Application of Gypsum Board through the Application of Fire Resistance Ceiling Structure)

  • 최동호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.217-218
    • /
    • 2019
  • Fire resistance ceiling system is the structure of which the ceiling installed under the slave of the structure has the fire resistance performance. Because of having the fire resistance performance, fire resistive coatings on steel beams can be reduced and large span structures can be constructed. So, it have advantages of convenience for construction, shorten for construction time and cost reducing. In foreign country, it is general that one system consisting of slave and ceiling is constructed as a fire resistance system, in these cases, gypsum boards are mostly used as ceiling materials. The purpose of this study was to explain the possibility of expanding the use of gypsum boards by securing fire resistance performance of these ceilings.

  • PDF

Shaking table tests on seismic response of backdrop metal ceilings

  • Zhou, Tie G.;Wei, Shuai S.;Zhao, Xiang;Ma, Le W.;Yuan, Yi M.;Luo, Zheng
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.807-819
    • /
    • 2019
  • In recent earthquakes, the failure of ceiling systems has been one of the most widely reported damage and the major cause of functionality interruption in some buildings. In an effort to mitigate this damage, some scholars have studied a series of ceiling systems including plaster ceilings and mineral wool ceilings. But few studies have involved the backdrop metal ceiling used in some important constructions with higher rigidity and frequency such as the main control area of nuclear power plants. Therefore, in order to evaluate its seismic performance, a full-scale backdrop metal ceiling system, including steel runners and metal panels, was designed, fabricated and installed in a steel frame in this study. And the backdrop metal ceiling system with two perimeter attachments variants was tested: (i) the ends of the runners were connected with the angle steel to form an effective lateral constraint around the backdrop metal ceiling, (ii) the perimeter attachments of the main runner were retained, but the perimeter attachments of the cross runner were removed. In the experiments, different damage of the backdrop metal ceiling system was observed in detail under various earthquakes. Results showed that the backdrop metal ceiling had good integrity and excellent seismic performance. And the perimeter attachments of the cross runner had an adverse effect on the seismic performance of the backdrop metal ceiling under earthquakes. Meanwhile, a series of seismic construction measures and several suggestions that need to be paid attention were proposed in the text so that the backdrop metal ceiling can be better applied in the main control area of nuclear power plants and other important engineering projects.

비내력 천장구조 내화성능평가에 대한 실험적 연구 (An Experimental Study on Fire Resistance Performance Test of Non-loadbearing Ceiling Systems)

  • 최동호;김대회;박수영
    • 한국화재소방학회논문지
    • /
    • 제25권4호
    • /
    • pp.22-27
    • /
    • 2011
  • 건축물의 바닥 하부에 설치되는 비내력 천장이 일정 시간의 내화성능을 확보할 경우 바닥 및 보에 요구되는 내화성능의 감소가 가능하다. 이에 따라 건물시공시 이들 부재에 시공되는 내화피복 절감 및 충전구조 시공 완화 등으로 인하여 공간 구획의 활용성이 증가하여 비교적 경량으로 대규모 공간에 대한 시공이 가능하게 되어 건물 시공 유지관리의 편의성 확보, 공사기간의 단축 및 비용절감과 같은 경제적인 건축생산이 가능하게 된다. 외국에서는 보 바닥 및 천장재를 하나의 복합 시스템으로 구성하여 내화구조로 시공하거나 천장자체의 내화성능을 확보하는 경우가 있으나 국내에서는 이에 대한 연구가 진행되지 않아 건축물의 고층 경량화에 따른 경제적인 효율성을 확보하지 못하고 있는 실정이다. 따라서 국내 건축물에 적용 가능한 내화성능을 확보한 표준화된 비내력 내화천장구조의 개발이 필요하며, 이에 본 연구에서는 현재 일반적인 비내력 천장구조의 내화성능을 평가하여 향후 비내력 내화천장구조의 개발을 위한 기초자료를 제시하였다.

냉각된 복사천장패널의 열전달 특성에 관한 연구 (A Study on the Heat Transfer Characteristics of the Radiant Chilled Ceiling Panel for Space Cooling)

  • 이태원;황인주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.164-169
    • /
    • 2001
  • There is a chilled ceiling panel which carries out the air conditioning by radiation and convection between the room and cold ceiling panel surface. In order to verify heat transfer characteristics between them in cooling system with radiant chilled ceiling panel, analytical and experimental studies were performed for various design and operating parameters such as tube space and diameter, inlet water temperature, mass flow rate, cooling load, and so on. In this study, we found that the tube space and inlet water temperature were more important elements than the tube diameter and water flow rate for the performance of radiant chilled ceiling panel. The cooling capacity of the radiant chilled ceiling panel had the maximum value of $65W/m^{2}$ because the highest cooling capacity was limited by the condensation on the panel surface. The results of comparison between numerical analysis and experiment showed a resonable agreement qualitatively, especially for low cooling capacity.

  • PDF

천장구조를 이용한 공동주택 바닥충격음 차단성능 개선에 관한 연구 (A Study on the Improvement Floor Impact Sound Insulation by Ceiling Structure in Apartment Houses)

  • 기노갑;김선우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1038-1042
    • /
    • 2007
  • The factors influencing the floor impact sound insulation include floor finishing materials, shock absorbing floors (slabs included), and ceiling structures. The ceilings of the apartment houses, currently built in Korea, are set up with lower parts of slabs and paper finishing, or with double floors for protecting against floor impact sounds in order to improve the sound insulating performance. The most common the method of ceiling structure construction consists of 'wood boarded frames + Gypsum boards + ceiling papers', which is called the wood boarded frame method. This study aimed to measures and evaluates floor impact sound insulation by which the ceiling space are widened according to suppression system is added in apartment house ceiling structure.

  • PDF

Performance evaluation of suspended ceiling systems using shake table test

  • Ozcelik, Ozgur;Misir, Ibrahim S.;Saridogan, Serhan
    • Structural Engineering and Mechanics
    • /
    • 제58권1호
    • /
    • pp.121-142
    • /
    • 2016
  • The national standard being used in Turkey for suspended ceiling systems (SCS) regulates material and dimensional properties but does not contain regulations regarding installation instructions which cause substandard applications of SCSs in practice. The lack of installation instructions would potentially affect the dynamic performance of these systems. Also, the vast majority of these systems are manufactured using substandard low-quality materials, and this will inevitably increase SCS related damages during earthquakes. The experimental work presented here focuses on the issue of dynamic performance of SCSs with different types of carrier systems (lay-on and clip-in systems), different weight conditions, and material-workmanship qualities. Moreover, the effects of auxiliary fastening elements, so called seismic perimeter clips, in improving the dynamic performance of SCSs were experimentally investigated. Results show that clip-in ceiling system performs better than lay-on system regardless of material and workmanship qualities. On the other hand, the quality aspect becomes the most important parameter in affecting the dynamic performance of lay-on type systems as opposed to tile weights and usage of perimeter clips. When high quality system is used, tile weight does not change the performance of lay-on system, however in poor quality system, tile weight becomes an important factor where heavier tiles considerably decrease the performance level. Perimeter clips marginally increase the dynamic performance of lay-on ceiling system, but it has no effect on the clip-in ceiling system under the shaking levels considered.

비내진 상세를 갖는 금속마감패널 천장시스템의 진동대 실험을 통한 내진성능평가 (Seismic Performance Evaluation of Non-seismic T-bar type Steel-Panel Suspended Ceiling using Shaking Table Test)

  • 이재섭;인성우;정담이;이두용;이상현;조봉호
    • 대한건축학회논문집:구조계
    • /
    • 제35권10호
    • /
    • pp.171-180
    • /
    • 2019
  • In Korea, the seismic design of non-structural elements was interested by Earthquake of the 2016 Gyeong-ju and 2017 Po-hang. Among the non-structural elements, the ceiling system with steel panel used in Po-hang station showed failure examples of non-seismic design ceiling. In this study, the seismic performance of suspended ceiling with steel-panel, such as those used in Po-hang Station, was evaluated by shaking table tests. The shaking table tests were performed in accordance with the ICC-ES AC156 standard with floor acceleration being applied horizontally in one direction using a $3.3{\times}3.3m^2$ frame. The ceiling system consists of steel-panels, carrying channels, main and cross T-bars, and anti-falling clips. The anti-falling clip prevents the steel panel falling completely. The shaking table test confirmed that the damage at the previous stage had a direct impact on the damage state at the next stage. Through the shaking table test, the damage state of the T-bar type steel-panel suspended ceiling system was defined.

천장시스템의 동특성 식별 및 인접 구조물과의 충돌을 고려한 동적응답해석 (Identification of Dynamic Characteristics and Numerical Analysis of Ceiling System Considering Collision Adjacent Structures)

  • 전민준;주보근;조봉호;이상현
    • 한국전산구조공학회논문집
    • /
    • 제32권4호
    • /
    • pp.205-213
    • /
    • 2019
  • 2017년 발생한 포항 지진으로 인하여 천장재, 외장재, 커튼월 등 비구조재의 파괴에 의한 피해가 다수 보고되었으며 비구조재의 내진설계가 중요해지고 있다. 본 연구에서는 임팩트해머 테스트를 통해 행어볼트 길이에 따른 천장재의 고유진동수와 감쇠비를 식별하였다. 또한 천장재가 벽 또는 다른 구조체에 충돌하는 경우 발생하는 충격효과를 정확히 고려하기 위해 충돌실험을 수행하였다. 식별된 천장재의 동특성과 충격지속시간을 바탕으로 실제로 천장재가 지진하중으로 인하여 주변 구조물과 충돌이 발생하는 경우에 대한 천장재 응답특성을 수치해석을 통하여 분석하였다. 수치해석 시뮬레이션 결과, 충격하중은 이격거리에 따라 선형적으로 증가하는 경향을 보였으며, 달대길이와는 무관한 것으로 나타났다.

바닥충격음 저감이 가능한 천장 공법 개발 (Development of ceiling construction methods reduced floor impact sound)

  • 김경호;김성훈;류종관;이종인;김용민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.203-207
    • /
    • 2014
  • According to the advanced study, Increase of ceiling air space could cause increase of floor impact sound by air-spring effect. So in this research, we studied the increase of floor impact sound caused by ceiling air space in apartment buildings. At first, we evaluated the change of floor impact noise in the condition of with or without ceiling air-space. And then we installed perforated ceiling systems and glass wool at ceiling area. we expected that perforated ceiling systems could prevent air-spring effect in ceiling space. As a result, ceiling air space caused increasement of floor heavy impact noise about 2~4dB. But perforated ceiling & sound-absorbing materials system could give us reduction of heavy floor impact noise about 3dB. So this systems could be a good alternative to obey national regulations, because it can reduce heavy impact noise additional to floating floor systems.

  • PDF