• Title/Summary/Keyword: CdTe detector

Search Result 80, Processing Time 0.024 seconds

DEVELOPMENT OF AN ASTRONOMICAL INFRARED PtSi CAMERA (천문관측용 PtSi 전하결합소자 적외선 카메라의 개발)

  • Hong, Seung-Su;;Gu, Bon-Cheol;Kim, Kwang-Tae;Kim, Chil-Yeong;Oh, Gap-Su;Lee, Myeong-Gyun;Lee, Hyeong-Mok;Kang, Yong-Woo;Park, Won-Gi
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.1-26
    • /
    • 1996
  • We have built a near-infrared imaging camera with a PtSi array detector manufactured by the Mitsubishi Company. The PtSi detector is sensitive in the wavelength range 1 to $5{\mu}m$. Quantum efficiency of PtSi is much lower than that of InSb and HgCdTe types. However, the PtSi array has advantages over the latter ones: (i)The read-out noise is very low; (ii)the characteristics of the array elements arc uniform and stable; (iii)it is not difficult to make a large PtSi array; and (iv) consequently the price is affordably low. The array used consists of $512{\times}512$ pixels and its size is $10.2\;mm{\times}13.3\;mm$. The filter wheel of the camera is equipped with J, H, K filters, and an aluminum plate for measuring the dark noise. The dewar is cooled with liquid nitrogen. We have adopted a method of installing the clock pattern and the observing softwares in the RAM, which Gill he easily used for other systems. We have developed a software with a pull-down menu for operating the camera and data acquisition. The camera has been tested by observing $\delta$ Orionis.

  • PDF

Analysis of Beam Hardening of Modulation Layers for Dual Energy Cone-beam CT (에너지 변조 필터로 구현한 이중 에너지 콘빔 CT의 에너지 스펙트럼 평가 연구)

  • Ahn, Sohyun;Cho, Sam Ju;Keum, Ki Chang;Choi, Sang Gyu;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • Dual energy cone-beam CT can distinguish two materials with different atomic compositions. The principle of dual energy cone-beam CT based on modulation layer is that higher energy spectrum can be acquired at blocked x-ray window. To evaluate the possibility of modulation layer based dual energy cone-beam CT, we analyzed x-ray spectrum for various thicknesses of modulation layers by Monte Carlo simulation. To compare with the results of simulation, the experiment was performed on prototype cone-beam CT for 50~100 kVp with CdTe XR-100T detector. As the result of comparing, the mean energy of energy spectrum for 80 kVp are well matched with that of simulation. The mean energy of energy spectrum for 80 and 120 kVp were increased as 1.67 and 1.52 times by 2.0 mm modulation layer, respectively. We realized that the virtual dual energy x-ray source can be generated by modulation layer.

Advanced LWIR Thermal Imaging System with a Large Zoom Optics (줌 광학계를 이용한 원적외선 열상장비의 설계 및 제작)

  • Hong, Seok-Min;Kim, Hyun-Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.354-360
    • /
    • 2005
  • A high performance LWIR(long wavelength infra red) zoom thermal imaging sensor using $480{\times}6$ HgCdTe(MCT) linear detector has been developed by ADD Korea. The optical system consists of zoom telescope having large objective about 190 mm diameter and optically well corrected scanning system. The zoom ratio of the telescope is 3: 1 and its magnification change is performed by moving two lens groups. And also these moving groups are used for athermalization of the system. It is certain that the zoom sensor can be used in wide operating temperature range without any degradation of the system performance. Especially, the sensor image can be displayed with the HDTV(high definition television) format of which aspect ratio is 16:9. In case of HDTV format, the scanning system is able to display 620,000 pixels. This function can make wider horizontal field of view without any loss of performance than the normal TV format image. The MRTD(minimum resolvable temperature difference) of the LWIR thermal imaging sensor shows good results below 0.04 K at spatial frequency 2 cycles/mrad and 0.23 K at spatial frequency 8 cycles/mrad at the narrow field of view.

Study on electrical properties of photoconductors for radiation detector application based on liquid crystal (액정 기반 방사선 검출기 적용을 위한 광도전체의 전기적 특성 연구)

  • Kang, Sang-Sik;Choi, Young-Zoon;Lee, Mi-Hyun;Kim, Hyun-Hee;No, Si-Chul;Cho, Kyu-Suck;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.2
    • /
    • pp.27-30
    • /
    • 2010
  • A X-ray optical modulator measures x-ray dose using optical transmissivity ratio change of the liquid crystal cell. To apply in this optical modulator, we made photoconductor films and compared electrical properties of this films in this study. Photoconductors are deposited on ITO glass with $200{\mu}m$ using the percipitation method and print method. I-V test was conducted to alalyze electrical properties of this films and measured darkcurrent and SNR was acquired using the measured dark current and sensitivity. As a result of this measurements, $HgI_2$ film made by precipitation method is lower(about 40%) darkcurrent than $HgI_2$ films made by precipitation method and sensitivity is two times greater than print method. And we knew that $HgI_2$ films were also 10~25 times greater SNR at $1v/{\mu}m$ than $PbI_2$, PbO, CdTe film made by precipitation method. This results suggest that $HgI_2$ films made by precipitation method has improved characteristics of x-ray dose meter by applying in x-ray optical modulator.

3D Fusion Imaging based on Spectral Computed Tomography Using K-edge Images (K-각 영상을 이용한 스펙트럼 전산화단층촬영 기반 3차원 융합진단영상화에 관한 연구)

  • Kim, Burnyoung;Lee, Seungwan;Yim, Dobin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.523-530
    • /
    • 2019
  • The purpose of this study was to obtain the K-edge images using a spectral CT system based on a photon-counting detector and implement the 3D fusion imaging using the conventional and spectral CT images. Also, we evaluated the clinical feasibility of the 3D fusion images though the quantitative analysis of image quality. A spectral CT system based on a CdTe photon-counting detector was used to obtain K-edge images. A pork phantom was manufactured with the six tubes including diluted iodine and gadolinium solutions. The K-edge images were obtained by the low-energy thresholds of 35 and 52 keV for iodine and gadolinium imaging with the X-ray spectrum, which was generated at a tube voltage of 100 kVp with a tube current of $500{\mu}A$. We implemented 3D fusion imaging by combining the iodine and gadolinium K-edge images with the conventional CT images. The results showed that the CNRs of the 3D fusion images were 6.76-14.9 times higher than those of the conventional CT images. Also, the 3D fusion images was able to provide the maps of target materials. Therefore, the technique proposed in this study can improve the quality of CT images and the diagnostic efficiency through the additional information of target materials.

Diagnostic X-ray Spectra Detection by Monte Carlo Simulation (진단용 X-선 스펙트럼의 몬테칼로 전산모사 측정)

  • Baek, Cheol-Ha;Lee, Seung-Jae;Kim, Daehong
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.289-295
    • /
    • 2018
  • Most diagnostic devices in the medical field use X-ray sources, which emit energy spectra. In radiological diagnosis, the quantitative and qualitative analyses of X-rays are essential for maintaining the image quality and minimizing the radiation dose to patients. This work aims to obtain the X-ray energy spectra used in diagnostic imaging by Monte Carlo simulation. Various X-ray spectra are simulated using a Monte Carlo simulation tool. These spectra are then compared to the reference data obtained with a tungsten anode spectral model using the interpolating polynomial (TASMIP) code. The X-ray tube voltages used are 50, 60, 80, 100, and 110 kV, respectively. CdTe and a-Se detector are used as the detectors for obtaining the X-ray spectra. Simulation results demonstrate that the various X-ray spectra are well matched with the reference data. Based on the simulation results, an appropriate X-ray spectrum, in accordance with the tube voltage, can be selected when generating an image for diagnostic imaging. The dose to be delivered to the patient can be predicted prior to examination in the diagnostic field.

Development of the Near Infrared Camera System for Astronomical Application

  • Moon, Bong-Kon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • In this paper, I present the domestic development of near infrared camera systems for the ground telescope and the space satellite. These systems are the first infrared instruments made for astronomical observation in Korea. KASINICS (KASI Near Infrared Camera System) was developed to be installed on the 1.8m telescope of the Bohyunsan Optical Astronomy Observatory (BOAO) in Korea. KASINICS is equipped with a $512{\times}512$ InSb array enable L band observations as well as J, H, and Ks bands. The field-of-view of the array is $3.3'{\times}3.3'$ with a resolution of 0.39"/pixel. It employs an Offner relay optical system providing a cold stop to eliminate thermal background emission from the telescope structures. From the test observation, limiting magnitudes are J=17.6, H=17.5, Ks=16.1 and L(narrow)=10.0 mag at a signal-to-noise ratio of 10 in an integration time of 100 s. MIRIS (Multi-purpose InfraRed Imaging System) is the main payload of the STSAT-3 in Korea. MIRIS Space Observation Camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}{\times}3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI of 30 layers, and GFRP pipe support in the system. Opto-mechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform the Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

  • PDF

High-Performance Compton SPECT Using Both Photoelectric and Compton Scattering Events

  • Lee, Taewoong;Kim, Younghak;Lee, Wonho
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1393-1398
    • /
    • 2018
  • In conventional single-photon emission computed tomography (SPECT), only the photoelectric events in the detectors are used for image reconstruction. However, if the $^{131}I$ isotope, which emits high-energy radiations (364, 637, and 723 keV), is used in nuclear medicine, both photoelectric and Compton scattering events can be used for image reconstruction. The purpose of our work is to perform simulations for Compton SPECT by using the Geant4 application for tomographic emission (GATE). The performance of Compton SPECT is evaluated and compared with that of conventional SPECT. The Compton SPECT unit has an area of $12cm{\times}12cm$ with four gantry heads. Each head is composed of a 2-cm tungsten collimator and a $40{\times}40$ array of CdZnTe (CZT) crystals with a $3{\times}3mm^2$ area and a 6-mm thickness. Compton SPECT can use not only the photoelectric effect but also the Compton scattering effect for image reconstruction. The correct sequential order of the interactions used for image reconstruction is determined using the angular resolution measurement (ARM) method and the energies deposited in each detector. In all the results of simulations using spherical volume sources of various diameters, the reconstructed images of Compton SPECT show higher signal-to-noise ratios (SNRs) without degradation of the image resolution when compared to those of conventional SPECT because the effective count for image reconstruction is higher. For a Derenzo-like phantom, the reconstructed images for different modalities are compared by visual inspection and by using their projected histograms in the X-direction of the reconstructed images.

Comparison of Parallel and Fan-Beam Monochromatic X-Ray CT Using Synchrotron Radiation

  • Toyofuku, Fukai;Tokumori, Kenji;Kanda, Shigenobu;Ohki, Masafumi;Higashida, Yoshiharu;Hyodo, Kazuyuki;Ando, Masami;Uyama, Chikao
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.407-410
    • /
    • 2002
  • Monochromatic x-ray CT has several advantages over conventional CT, which utilizes bremsstrahlung white x-rays from an x-ray tube. There are several methods to produce such monochromatic x-rays. The most popular one is crystal diffraction monochromatization, which has been commonly used because of the fact that the energy spread is very narrow and the energy can be changed continuously. The alternative method is the use of fluorescent x-ray, which has several advantages such as large beam size and fast energy change. We have developed a parallel-beam and a fan-beam monochromatic x-ray CT, and compared some characteristics such as accuracy of CT numbers between those systems. The fan beam monochromatic x-rays were generated by irradiating target materials by incident white x-rays from a bending magnet beam line NE5 in 6.5 GeV Accumulation Ring at Tukuba. The parallel beam monochromatic x-rays were generated by using a silicon double crystal monochromator at the bending magnet beam line BL-20BM in Spring-8. A Cadmium telluride (CdTe) 256 channel array detector with 512mm sensitive width capable of operating at room temperature was used in the photon counting mode. A cylindrical phantom containing eight concentrations of gadolinium was used for the fan beam monochromatic x-ray CT system, while a phantom containing acetone, ethanol, acrylic and water was used for the parallel monochromatic x-ray CT system. The linear attenuation coefficients obtained from CT numbers of those monochromatic x-ray CT images were compared with theoretical values. They showed a good agreement within 3%. It was found that the quantitative measurement can be possible by using the fan beam monochromatic x-ray CT system as well as a parallel beam monochromatic X-ray CT system.

  • PDF

DEVELOPMENT OF THE MECHANICAL STRUCTURE OF THE MIRIS SOC (MIRIS 우주관측카메라의 기계부 개발)

  • Moon, B.K.;Jeong, W.S.;Cha, S.M.;Ree, C.H.;Park, S.J.;Lee, D.H.;Yuk, I.S.;Park, Y.S.;Park, J.H.;Nam, U.W.;Matsumoto, Toshio;Yoshida, Seiji;Yang, S.C.;Lee, S.H.;Rhee, S.W.;Han, W.
    • Publications of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.53-64
    • /
    • 2009
  • MIRIS is the main payload of the STSAT-3 (Science and Technology Satellite 3) and the first infrared space telescope for astronomical observation in Korea. MIRIS space observation camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}\times3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200 K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI (Multi Layer Insulation) of 30 layers, and GFRP (Glass Fiber Reinforced Plastic) pipe support in the system. Optomechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.