• Title/Summary/Keyword: Cd & Pb removal

Search Result 198, Processing Time 0.026 seconds

Removal of Cd(II) and Pb(II) Ions in water by the Ulva pertusa and Sargassum horneri (Ulva pertusa 및 Sargassum horneri를 이용한 수중 Cd(II) 및 Pb(II) 이온의 제거)

  • 김영하;박미아;박수인;김택제;이기창
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.803-809
    • /
    • 1998
  • Heavy metal ions in water were removed using algal biomass as adsorbents. Absorbents were dried for 3 days, ground them by 40~60 mesh and then were swelled in a buffer solution for 1hr. After being packed in the column, commercially available standard solution of Cd(II) and Pb(II) ions were diluted to get the suitable concentration and then it was eluted with the rate of 1mι/min. Heavy metals on the adsorbents were recovered with nitric acid. More amounts of Cd(II) or Pb(II) ions in green algae, Ulva pertusa, than in brown algae, Sargassum horneri, were adsorbed. Pb(II) ion was adsorbed more than Cd(II) ion in both algae. The pH effect of adsorbed amounts of Cd(II), Pb(II) ions on the biomass was shown the following order ; pH 10.5 > 8.5 > 7.0 > 5.5 > 3.5. Recovery ratio of metal ions front algae is shown higher in acidic or neutral conditions than it in alkalic ones. Pb(II) ion is recovered relatively more than Cd(II) ion in our system.

  • PDF

Effects of Cd substitution on the superconducting properties of (Pb0.5Cu0.5-xCdx)Sr2(Ca0.7Y0.3)Cu2Oz

  • Lee, Ho Keun;Kim, Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.24-28
    • /
    • 2018
  • To understand the effects of Cd substitution for Cu, $(Pb_{0.5}Cu_{0.5-x}Cd_x)Sr_2(Ca_{0.7}Y_{0.3})Cu_2O_z$ (x = 0 ~ 0.5) compounds were synthesized and the structural and superconducting properties of the compounds were characterized. Resistivity data revealed that superconducting transition temperature rises initially up to x = 0.25 and then decreases as the Cd doping content increases. Room-temperature thermoelectric power decreases at first up to x = 0.25 and then increases with higher Cd doping content, indicating that the change in $T_c$ is mainly caused by the change in the hole concentration on the superconducting planes by the Cd doping. The non-monotonic dependence of the lattice parameters and the transition temperature with Cd doping content is discussed in connection with the possible formation of $Pb^{+2}$ ions and the removal of excess oxygen caused by Cd substitution in the charge reservoir layer. A correlation between transition temperature and c/a lattice parameter ratio was observed for the $(Pb_{0.5}Cu_{0.5-x}Cd_x)Sr_2(Ca_{0.7}Y_{0.3})Cu_2O_z$ system.

A Basic Study for Removal of Heavy Metal Elements from Wastewater using Spent Lithium-Aluminum-Silicate(LAS) Glass Ceramics (사용 후 유리세라믹(Lithium-Aluminum-Silicate)을 활용한 중금속 제거 기초 연구)

  • Go, Min-Seok;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.49-55
    • /
    • 2022
  • In this study, the heavy metal ions (of Pb, Cd, Cr, and Hg) in wastewater were removed using a spent Li2O-Al2O3-SiO2-based crystallized glass previously used as an induction top plate material. Changes in the removal efficiency of heavy metals according to different reaction parameters, such as the amount of zeolite used as a heavy-metal adsorbent, adsorption time, initial concentration of the heavy metals, and pH of the initial solution, were investigated. As the amount of zeolite added increased, the heavy-metal removal efficiency also increased. Adsorption time had a considerable influence on adsorption characteristics, and the removal efficiency of all heavy metals increased with increasing adsorption time. In the case of Cd, the removal efficiency was greatly improved depending on the adsorption time. The initial concentration of the heavy-metal solution did not affect the removal efficiency; however, the initial pH of the heavy-metal solution affected the removal efficiency. More specifically, the removal efficiency of Cd increased while that of Pb and Cr decreased with increasing pH. The adsorption characteristics of Hg were not significantly affected by pH.

Preparation and characterization of green adsorbent from waste glass and its application for the removal of heavy metals from well water

  • Rashed, M. Nageeb;Gad, A.A.;AbdEldaiem, A.M.
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.53-71
    • /
    • 2018
  • Waste glass disposal causes environmental problems in the cities. To find a suitable green environmental solution for this problem low cost adsorbent in this study was prepared from waste glass. An effective new green adsorbent was synthesized by hydrothermal treatment of waste glass (WG), followed by acidic activation of its surface by HCl (WGP). The prepared adsorbent was characterized by scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD), and BET surface measurement. The developed adsorbent was used for the removal of heavy metals (Cd, Cu, Fe, Pb and Zn) from well water. Batch experiments were conducted to test the ability of the prepared adsorbent for the removal of Cd, Cu, Fe, Pb and Zn from well water. The experiments of the heavy metals adsorption by adsorbent (WGP) were performed at different metal ion concentrations, solution pH, adsorbent dosage and contact time. The Langmuir and Freundlich adsorption isotherms and kinetic models were used to verify the adsorption performance. The results indicated high removal efficiencies (99-100%) for all the studied heavy metals at pH 7 at constant contact time of 2 h. The data obtained from adsorption isotherms of metal ions at different time fitted well to linear form of the Langmuir sorption equation, and pseudo-second-order kinetic model. Application of the resulted conditions on well water demonstrated that the modified waste glass adsorbent successfully adsorbed heavy metals (Cd, Cu, Fe, Pb and Zn) from well water.

Removal, Recovery, and Process Development of Heavy Metal by Immobilized Biomass Methods (미생물 고정화법에 의한 중금속 제거, 회수 및 공정개발)

  • Ahn, Kab-Hwan;Shin, Yong-Kook;Suh, Kuen-Hack
    • Journal of Environmental Science International
    • /
    • v.6 no.1
    • /
    • pp.61-67
    • /
    • 1997
  • Heavy metal adsorption by microbial cells is an alternative to conventional methods of heavy metal removal and recovery from metal-bearing wastewater The waste Sac-chuomyces cerevisiae is an inexpensive, relatively available source of biomass for heavy metal biosorption. Biosorption was investigated by free and immobilized-S. cerevisiae. The order of biosorption capacity was Pb>Cu>Cd with batch system. The biosorption parameters had been determined for Pb with free , cells according to the Freundlich and Langmuir model. It was found that the data fitted reasonably well to the Freundlich model. The selective uptake of immobilized-S. cerevisiae was observed when all the metal ions were dissolved in a mixed metals solution(Pb, Cu, Cr and Cd). The biosorption of mixed metals solution by immobilized-cell was studied in packed bed reactor. The Pb uptake was Investigated in particular, as it represents one of the most widely distributed heavy metals in water. We also tested the desorption of Pb from immobilized-cell by us- ing HCI, $H_2SO_4$ and EDTA.

  • PDF

Biosorption of Pb and Cd by Indigenous Bacteria Isolated from Soil Contaminated with Oil and Heavy Metals (유류와 중금속으로 오염된 토양에서 분리한 미생물의 Pb와 Cd 생물흡착 특성)

  • Kim, Sang-Ho;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.427-434
    • /
    • 2009
  • Indigenous bacterium which shows a tolerance to high metal toxicity was isolated from soil concomitantly contaminated with oil and heavy metals. The characteristics of the bacterium for Pb and Cd biosorption was investigated under the various experimental conditions such as bacterial growth phase, the initial metal concentration, the input biomass amount, temperature and pH. The Langmuir adsorption isotherm modeling was described to know the capacity and intensity of biosorption. The low initial concentration of heavy metals and high biomass has a maximum heavy metal removal efficiency, but biosorption capacity of Pb and Cd has different values. Biosorption efficiency was highest in the end of the microbial growth stage and under pH 5~9 condition, but was less affected by temperature variation of 25~$35^{\circ}C$. The maximum biosorption capacity for Pb and Cd was 62.11 and 192.31 mg/g, respectively and each $R^2$ was calculated as 0.71 and 0.98 by applying Langmuir isothermal adsorption equation. Biosorption for Cd was considered as monomolecular adsorption to single layer on the surface of cells, whereas biosorption for Pb was considered as accumulation process into the cell by the microbial metabolism and precipitation reaction with anion of bacteria.

Quantifying the Interactive Inhibitory Effect of Heavy Metals on the Growth and Phosphorus Removal of Pseudomonas taeanensis

  • Yoo, Jin;Kim, Deok-Hyun;Oh, Eun-Ji;Chung, Keun-Yook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.35-49
    • /
    • 2018
  • This study was initiated to quantitatively evaluate the effects of five heavy metals (Cd, Cu, Zn, Pb, and Ni) on growth and P removal efficiencies of Pseudomonastaeanensis, known as the phosphorus accumulating microorganism. The heavy metals were added individually and with the binary mixture to the batch culturing system of Pseudomonastaeanensis. $IC_{50}$ and $EC_{50}$ were used to quantitatively evaluate their effects on the growth and phosphorus removal efficiency of Pseudomonas taeanensis in those treatments. Additionally, additive index value method was used to evaluate the interactive effects of heavy metals for Pseudomonas taeanensis in this study. As those heavy metals were singly added to Pseudomonastaeanensis, the greatest inhibitory effect on its growth and P removal efficiency was observed in Cd, whereas, the smallest effect was found in Ni. As the concentrations of all heavy metals added were gradually increased, its growth and P removal efficiency was correspondingly decreased. Specifically, $IC_{50}$ of Pseudomonas taeanensis for Cd, Cu, Zn, Pb, and Ni were $0.44mg\;L^{-1}$, $5.12mg\;L^{-1}$, $7.46mg\;L^{-1}$, $8.37mg\;L^{-1}$ and $14.56mg\;L^{-1}$, respectively. The P removal efficiency of Pseudomonas taeanensis was 81.1%. $EC_{50}$ values of Pseudomonas taeanensis for Cd, Cu, Zn, Pb, and Ni were $0.44mg\;L^{-1}$, $4.08mg\;L^{-1}$, $7.17mg\;L^{-1}$, $8.90mg\;L^{-1}$ and $11.26mg\;L^{-1}$, respectively. In the binary treatments of heavy metals, the lowest $IC_{50}$ and $EC_{50}$ were found in the Cd + Cu treatment, whereas, the highest $IC_{50}$ and $EC_{50}$ were found in the Zn + Pb and Pb + Ni treatments, respectively. Most of the interactive effects for the binary mixture treatments of heavy metals were antagonistic. Based on the results obtained from this study, it appears that they could provide the basic information about the toxic effects of the respective individual and binary treatments of heavy metals on the growth and P removal efficiency of other phosphorus accumulating organisms.

Simultaneous Removal of Heavy Metals and Diesel-fuel from a Soil Column by Surfactant Foam Flushing (계면활성제 거품(Foam)을 이용한 토양칼럼 내 유류 및 중금속 동시 제거 연구)

  • Heo, Jung-Hyun;Jeong, Seung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.90-96
    • /
    • 2011
  • Simultaneous removal of heavy metals (Cd, Pb) and diesel-fuel from a soil column was evaluated by respectively flushing with sodium dodecyl sulfate (SDS) solution, mixture of SDS and sodium iodide (SDS + NaI), and surfactant foam (SDS + NaI foam). First, this study evaluated these flushing methods to the heavy metals only-contaminated soil for removal of heavy metals from the heavy-metal only contaminated soil column. After 7 pore volume flushing of the soil column, Cd removal efficiencies from the soil were 40% by SDS solution, 50% by SDS + NaI mixture, and 60% by surfactant foam. The flushing results implied that anionic surfactant and ligand can be efficiently applied to extraction of Cd from the heavy metal contaminated soil. Furthermore, surfactant foam flushing showed an increased flushing efficiency with enhancing the contact between surfactant solution and soil. However, Pb removal efficiency by these flushing methods did not show any difference unlike those of Cd. Second, this study eventually evaluated flushing methods for simultaneous removal of heavy metals and diesel-fuel from the soil column with 7 pore volume flushing. Diesel-fuel removal efficiencies were 50% by SDS + NaI flushing and 90% by SDS + NaI foam flushing. Cd removal efficiency by the foam flushing reached to 80% which was higher than the result of the previous heavy metals onlycontaminated soil experiment. This result implied that diesel-fuel could act as a metal-solvent while it contacted to heavy metals present in the soil. This study clearly showed that surfactant foam flushing simultaneously removed heavy metals and diesel fuel from the soil column.

A Study on the Adsorption of Heavy Metals by Chitosan Obtained from Shrimp Shell (새우껍질로부터 얻어진 키토산을 이용한 중금속 흡착에 관한 연구)

  • Cha, Wool-Suk;Kim, Jong-Soo;Cho, Bae-Sick;Kim, Chong-Kyun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.504-508
    • /
    • 1998
  • Experimental investigation on the adsorption of heavy metal confounds as $Fe^{2+}$, $Cu^{2+}$, $Mn^{2+}$, $Zn^{2+}$, $Ni^{2+}$, $Pb^{2+}$, $Cd^{2+}$, $Cr^{6+}$ using chitosan was carried out. The adsorption of each component of heavy metal compounds was measured by Atomic Absorption apparatus. The range of optimum pH for the removal rates of heavy metal compounds was found pH 7.0~9.0. The maximum time for the removal rate of $Fe^{2+}$ was observed about 15 min. The maximum time for the removal raters of $Cu^{2+}$, $Mn^{2+}$, $Zn^{2+}$, $Ni^{2+}$, $Pb^{2+}$, $Cd^{2+}$, and $Cr^{6+}$ was observed about 25 min. The adsorption rates of heavy metal compounds by chitosan have been found in the order of $Fe^{2+}>Cu^{2+}>Mn^{2+}>Zn^{2+}>Ni^{2+}>Pb^{2+}>Cd^{2+}>Cr^{6+}$.

  • PDF

Studies on Removal of Water Pollutants by Aquatic Plants II. Removal of Water Polluted Nutrients and Heavy Metals by Water Hyacinth (수생식물(水生植物)을 이용(利用)한 수질오염원제거(水質汚染源除去)에 관(關)한 연구(硏究) - 제2보(第2報) 부레옥잠의 영양염류(營養鹽類) 및 중금속(重金屬) 제거효과(除去效果))

  • Lee, Kyu-Seung;Kim, Moon-Kyu;Pyon, Jong-Yeong;Lee, Jong-Sik
    • Korean Journal of Weed Science
    • /
    • v.5 no.2
    • /
    • pp.149-154
    • /
    • 1985
  • Removal of water pollutants by water hyacinth was examined with two nutrients, $NO_3$-N, $PO_4$-P and four heavy metals, Cu, Pb, Cd, Cr under laboratory conditions. $NO_3$-N was reduced to 0.7, 0.9 and 1.2 ppm, and 0.1, 0.2 and 0.5 ppm in $NO_4$-P from 10, 25 and 50 ppm 3 days after treatment, respectively. Among heavy metals Cu and Pb were removed faster and higher than Cd and Cr and also amount of heavy metals absorbed by water hyacinth was higher in the order of Cu > Pb > Cr > Cd. Distribution of heavy metals in this plant was higher in roots than in leaves and amount absorbed in roots was related to the treated concentrations. The harmful effect on growth of water hyacinth was observed in Cu and Cd.

  • PDF