• Title/Summary/Keyword: Cd & Pb removal

Search Result 198, Processing Time 0.025 seconds

Fraction and Geoaccumulation Assessment Index of Heavy Metals in Abandoned Mines wastes (휴폐광산 지역에서 폐석의 중금속 존재 형태와 지화학적농축계수 평가)

  • Kim Hee-Joung;Park Byung-Kil;Kong Sung-Ho;Lee Jai-Young;Ok Yong-Sik;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.75-80
    • /
    • 2005
  • Several metalliferous including Guedo mine, Manjung mine and Joil mine located at the upper watershed of Namhan river, were abandoned or closed since 1988 due to the mining industry promotion policy and thus disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in soil pollution. In this research, total and fractional concentrations of heavy metals in mining wastes were analyzed and accordingly the degree of soil pollutions in the abandoned mine area were quantitatively assessed employing the several pollution indices. The mining waste samples from Guedo mine, Manjung mine and Joil mine recently abandoned were collected for the evaluation of the potential of water pollution by mining activities. Index of geoaccumulation fractional composition and removal efficiency of some heavy metals by different concentration of HCl treatment were analyzed. Index of geoaccumulation of Cd, Pb, Zn, Cu, Ni and Cr are 6, $4\~6,\;0\~6,\;4\~5$, 2 and 0 respectively. The index of geoaccumulation of Cd, Pb, Zn and Cu reveals the mining wastes has high pollution potential in the area. According to sequential extraction of metals in the mine wastes organic fraction of Cu, reducible fraction of Pb, residual fraction of Ni and Zn were the most abundant fraction of heavy metals in mining wastes.

Lead Biosorption by Alginate Beads Immobilizing Aspergillus niger (Aspergillus niger를 고정화한 Alginate Bead에 의한 납 흡착)

  • Bang, Byung-Ho
    • Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.185-190
    • /
    • 2001
  • Alginate, a well-known biopolymer, is universally applied for immobilization of microbial cells. Biosorption characteristics of lead by waste biomass of immobilized A. niger beads, used in fermentation industries to produce citric acid, were studied. The immobilized A. niger beads, prepared via capillary extrusion method using calcium chloride, were applied in the removal of lead. Pb uptake was the highest in A. niger beads cells grown for 3 days with medium producing citric acid (12% sucrose, 0.5% $NH_4NO_3$, 0.1% $KH_2PO_4$, and 0.025% $MgSO_4$). Lead uptake by the immobilized A. niger beads and free A. niger mycellia beads increased sharply with time. However, while uptake by the immobilized A. niger beads continued to increase slowly, that by free A. niger mycellia beads stopped after 30 min. The optimum pH and temperature of lead uptake were found to be 6 and $35^{\circ}C$, respectively. The maximum uptake of lead was achieved with $50{\sim}100$ beads and 50 ml lead solution in a 250-ml Erlenmeyer flask, while, at over 100 beads, uptake of the lead decreased. The order of biosorption capacity for heavy metals was Pb>Cu>Cd. Pb uptake capacity of the immobilized A. niger beads treated with 0.1 M $CaCI_2$, 0.1 M NaOH, and 0.1 M KOH decreased compared to the untreated beads. On testing the desorption of Pb from the immobilized A. niger beads, re-uptake of Pb was found possible after desorption of the binding metal with 0.1 M HCI.

  • PDF

Physicochemical properties of deposited particles on surface of pine leaves as biomarker for air pollution (솔잎가지 표면에 침착된 입자상 물질의 물리화학적 특성 및 대기오염 지표로서의 가능성 고찰)

  • Chung, David;Choi, Jeong-Heui;Lee, Jang-Ho;Lee, Soo-Yong;Lee, Ha-Eun;Park, Ki-Wan;Shim, Kyu-Young;Lee, Jong-Chun
    • Analytical Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.247-258
    • /
    • 2018
  • The purpose of the present study was to investigate whether the degree of air pollution can be evaluated via examination of local plants. Selected sites included two parks in an industrial area, as well as two parks in an urban area. Selected plant samples comprised one-year-old pine shoot leaves. Leaves growing over 2 m from the ground were collected from over 10 pine trees. Leaf surface was analyzed for deposition of 14 trace elements and 16 polycyclic aromatic hydrocarbons (PAHs), including particle size and mass, surface imaging, precipitation-mediated particle removal rate, and concentration. Particle size ranged from 0.4 to $200{\mu}m$, and the volume percentage of particles ${\leq}10$ was 20 %. Deposited particle mass ranged from 0.450-0.825 mg, and precipitation-mediated removal rate ranged from 10.0-27.6 %. Trace element concentration, as measured by ICP/MS after microwave acid digestion, was 18.8-26.3 mg/kg As, 0.08-0.13 mg/kg Be, 0.06-0.08 mg/kg Cd, 4.91-17.8 mg/kg Cr, 5.26-405 mg/kg Cu, 1,930-2,670 mg/kg Fe, 3.03-28.1 mg/kg Pb, 26.9-42.8 mg/kg Mn, 2.66-10.4 mg/kg Ni, 4,560-8,730 mg/kg Al, 2,500-6,120 mg/kg Ba, 5.27-17.8 mg/kg Rb, 40.9-95.3 mg/kg Sr, and 4,030-8,260 mg/kg Zn. Concentration of PAHs, as analyzed by GC/MS/MS after liquid-liquid extraction and purification of deposited particles, ranged from 1.17 to 12.378 mg/kg for ${\Sigma}PAH_{16}$ and from 1.17 to 12.378 mg/kg for ${\Sigma}PAH_7$.

Assessment of Adsorption Capacity of Mushroom Compost in AMD Treatment Systems (광산배수 자연정화시설 내 버섯퇴비의 중금속 흡착능력 평가)

  • Yong, Bo-Young;Cho, Dong-Wan;Jeong, Jin-Woong;Lim, Gil-Jae;Ji, Sang-Woo;Ahn, Joo-Sung;Song, Ho-Cheol
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Acid mine drainage (AMD) from abandoned mine sites typically has low pH and contains high level of various heavy metals, aggravating ground- and surface water qualities and neighboring environments. This study investigated removal of heavy metals in a biological treatment system, mainly focusing on the removal by adsorption on a substrate material. Bench-scale batch experiments were performed with a mushroom compost to evaluate the adsorption characteristics of heavy metals leached out from a mine tailing sample and the role of SRB in the overall removal process. In addition, adsorption experiments were perform using an artificial AMD sample containing $Cd^{2+}$, $Cu^{2+}$, $Pb^{2+}$ and $Zn^{2+}$ to assess adsorption capacity of the mushroom compost. The results indicated Mn leached out from mine tailing was not subject to microbial stabilization or adsorption onto mushroom compost while microbially mediated stabilization played an important role in the removal of Zn. Fe leaching significantly increased in the presence of microbes as compared to autoclaved samples, and this was attributed to dissolution of Fe minerals in the mine tailing in a response to the depletion of $Fe^{3+}$ by iron reduction bacteria. Measurement of oxidation reduction potential (ORP) and pH indicated the reactive mixture maintained reducing condition and moderate pH during the reaction. The results of the adsorption experiments involving artificial AMD sample indicated adsorption removal efficiency was greater than 90% at pH 6 condition, but it decreased at pH 3 condition.

A Study of Influence Factors for Immobilizing Heavy Metals in Contaminated Soil (중금속으로 오염된 토양의 고정화 영향인자에 관한 연구)

  • Hwang, An-Na;Na, Seung-Min;Khim, Jee-Hyeong
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.72-77
    • /
    • 2007
  • Soil contamination by heavy metals was environmental concern due to its effect on human. In this study, monopotassium phosphate $(KH_2PO_4)$ used as phosphate source to remediate the contaminated soil with heavy metals and factors such as reaction time, initial concentration and pH of phosphate solution, species of heavy metal (lead, cadmium, zinc) and particle size were controlled. Heavy metals were removed in the order Pb > Zn > Cd and the maximum effectiveness was achieved for Pb. The removal efficiency of lead was from 95% to 100% and occurred rapidly occurred during 10 minutes. Mechanism of lead immobilization is dissolution of phosphate and the forming of a new mineral with phosphate having extremely low solubility.

Distribution of Foreign Mineral Materials and Heavy Metals Contained in Herbal Medicines, and Effect of Washing (한약재에 함유된 광물성이물과 중금속의 분포 및 수세효과)

  • Kim, Dong-Gyu;Kim, Kyung-Sik;Lee, Sung-Deuk;Jo, Sung-Ae;Lee, Hyun-Kyoung;Jung, Sun-Ok;Jung, Kweon;Park, Seung-Kook
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.1
    • /
    • pp.41-47
    • /
    • 2014
  • This study was conducted to investigate the content of foreign mineral materials and heavy metals (Pb, As, Cd, Hg) contained in commercial herbal medicines (1504 samples) classified by parts used, and the effect of removing heavy metals by washing treatment (take 50 g of the sample and put 1000 ml of distilled water, shake it gentle by hand for 1 min). The 5% trimmed means of acid-insoluble ash value (%) were as follows; above ground parts (0.76) and underground parts (0.52). Those of the total amount of individual heavy metals value (mg/kg) were as follows; caulis (1.33), flos (1.23), herba (0.91), cortex (0.76), rhizoma (0.73), radix (0.67), semen (0.44) and fructus (0.39). Acid-insoluble ash content was correlated with Pb in herbal medicines of underground parts (r=0.446) (p<0.01). After washing, the removal rate of heavy metals contained in 6 radix herbal medicines shows 33-13% respectively.

A Study on the Removal of Heavy Metals in Soil by Sewage Sludge Biochar (하수슬러지의 Biochar특성을 이용한 토양내 중금속 제거 연구)

  • Kim, Hye-Won;Bae, Sunyoung;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.58-64
    • /
    • 2013
  • This study proposed a low temperature hydrothermal carbonization to treat and recycle sewage sludge and determined the optimal conditions for the biochar production. The physical and chemical properties of biochar were analyzed and its sorption capacity for heavy metals was evaluated. To produce biochar, 50 g of sewage sludge was heated at 220, 230, and $240^{\circ}C$ for 1, 2, 3, 5, 8, and 10 hours in a reactor. The optimal conditions to produce biochar was $230^{\circ}C$ and 8 hours. Sorption capacity tests were conducted for arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn) and nickel (Ni). Among them, lead was shown the highest heavy metal adsorption efficiency of biochar, followed by copper, cadmium, zinc, and nickel, but arsenic was hardly adsorbed overall.

A Study on the Micropollutants and Removal of Micropollutants Contained in Road Runoff (노면배수에 함유된 미량오염물질 및 제거에 관한 연구)

  • Kim, Boo-Gil;Park, Heung-Jai;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.215-219
    • /
    • 2009
  • Micropollutants, which can be caused by imperfect combustion, are toxic chemical compound that flows into the river system after being contained in road runoff, a non-point source pollutant and accumulates in the body. The micropollutants that have characteristics such as toxicity, persistence, bio-accumulation, long-range transportation behave so similarly to micro particles that they can be removed by means of filtration or absorption. This study has examined the kinds and concentrations of micropollutants contained in deposited road particles. It has revealed that the kinds of micropollutants contained in the clarified supernatant liquid of deposited road particles are heavy metals and polycyclic aromatic hydrocarbons(PAHs) composed of two or three benzene rings, including naphthalene and acenaphthalene. Their concentrations have been shown to be low, with 0.418 mg/L, 0.058 mg/L, 0.104 mg/L, 0.014 mg/L, 0.00075 mg/L for Zn, Pb, Cu, Cr, Cd, respectively and 0.00156 mg/L and 0.00184 mg/L for naphthalene and acenaphthalene.

Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

  • Kwon, Hee-won;Kim, JeongJin;Ha, Dong-Woo;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.28-32
    • /
    • 2016
  • There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

The Recovery of Heavy Metals Using Encapsulated Microbial Cells

  • Park, Joong-Kon;Jin, Yong-Biao;Park, Hyung-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.132-135
    • /
    • 1997
  • We prepared capsules containing Saccharomyces cerevisiae and Zoogloea ramigera cells for the removal of lead(II) and cadmium ions. Microbial cells were encapsulated and cultured in the growth medium. The S.cerevisiae cells grown in the capule did not leak through the capsule membrane. The dried cell density reached to 250 g/l on the basis of the inner volume of the 2.0 mm diameter capsule after 36 hour cultivation. The dry whole cell expolymer density of encapsulated Z.ramigera reached to 200 g/L. The capsule was crosslinked with triethylene tetramine and glutaric dialdehyde solutions. The cadmium uptake of encapsulated whole cell expolymer of Z.ramigera was 55mg Cd/g biosorbent. The adsorption line followed well Langmuir isotherm. The lead uptake of the encapsulated S. cerevisiae was about 30 mg Pb/g biomass. The optimum pH of the lead uptake using encapsulated S. cerevisiae was found to be 6. Freundlich model showed a little better fit to the adsorption data than Langmuir model 95 percent of the lead adsorbed on the encapsulated biosorbents was desorbed by the 1 M HCl solution. The capsule was reused 50 batches without loosing the metal uptake capacity. And the mechanical strength of the crosslinked capsule was retained after 50 trials.

  • PDF