• 제목/요약/키워드: Cavity mode

검색결과 350건 처리시간 0.025초

캐비티 재질이 마이크로파 유전체 공진기의 Q값 측정에 미치는 영향 (Effect of Cavity Material on the Q-Factor Measurement of Microwave Dielectric Materials)

  • 박재환;박재관
    • 마이크로전자및패키징학회지
    • /
    • 제18권3호
    • /
    • pp.39-43
    • /
    • 2011
  • 마이크로파 유전체의 Q 값 측정에 널리 사용되고 있는 유전체 공진기 방법에서 캐비티의 재질변화가 유전체의 Q 값 측정에 미치는 오차요인에 대해 HFSS 시뮬레이션과 실측평가를 병행하여 조사하였다. HFSS의 전자계 벡터 형상으로부터 $TE_{01\delta}$ 모드의 공진주파수를 결정하고 $S_{21}$ 파라메터의 3dB 대역폭으로부터 Q 값을 계산하였다. 캐비티 금속이 Cu, SUS, Au 등으로 변화할 경우 유전체 공진기의 Q 값 측정에 큰 오차는 발생하지 않았으나, 금속이 산화하여 전도도가 수 천 정도로 떨어질 경우 Q 값이 매우 낮게 측정되는 오차가 발생함을 확인하였다. 이러한 시뮬레이션 결과는 실제로 다양한 재질의 금속 캐비티를 가지고 유전체 공진기의 Q 값을 측정해 본 결과 서로 일치되는 관련성을 나타내었다.

2차원과 3차원 아음속 공동 유동 특성에 대한 수치적 연구 (NUMERICAL ANALYSIS OF TWO- AND THREE-DIMENSIONAL SUBSONIC TURBULENT CAVITY FLOWS)

  • 최홍일;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.187-193
    • /
    • 2007
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}\;-\;{\omega}$ turbulence model. The cavity has the aspect ratios of 2.5, 3.5 and 4.5 for two-dimensional case, same aspect ratios with the W/D ratio of 2 for three-dimensional case. The Mach and Reynolds numbers are 0.53 and 1,600,000 respectively. The flow field is observed to oscillate in the "shear layer mode" with a feedback mechanism. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formula. The MPI(Message Passing Interface) parallelized code was used for calculations by PC-cluster.

  • PDF

공기층을 갖는 공조덕트 구조물에서 흡음재의 흡음특성에 관한 연구 (A Study on the Absorption Characteristics of Absorbents in Duct System with the Air Cavity)

  • 김찬묵;김도연;방극호
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.892-897
    • /
    • 2000
  • In this paper, experimental methods to find acoustic characteristics of acoustically treated air-conditioning duct system are proposed. Existing methods to analyze acoustic properties of duct with absorbent material have dilemma which has to assume the wave in duct to be a plane wave. Under this assumption. applicable frequency limitation makes accurate analysis of practical air-conditioning system impossible. In order to analyze the properties of in-lined treated absorbent with high degree of accuracy, in this experiments the range of exciting frequency of sound source is broadband, which means that source speaker excited higher mode of in-duct sound field. Also, to define the relations of air cavity to the acoustic characteristics, acoustic experiments on ducts with air cavity of different depth are operated. In conclusion, air-cavity makes the absorbing ability of duct improved in low frequency range. Due to the interactions between the air cavity depth and the depth of absorbents, according to depth of cavity, the magnitude of absorption coefficients vs frequencies in specific range is changed. In lower frequency range, the absorption of sound energy by air cavity is more dominant than by absorbent itself, in higher range, the inversion is true.

  • PDF

진행모드 해석을 이용한 유전체 공진기 대역통과 필터의 결합 특성 개선에 관한 연구 (A Study on the Coupling Performance Improvement of Cylindrical DR Bandpass Filter using Travelling Wave Mode Analysis)

  • 이원희;박장원;양재혁;허정;이재훈;이상영
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2000년도 종합학술발표회 논문집 Vol.10 No.1
    • /
    • pp.125-129
    • /
    • 2000
  • In this paper, We designed and fabricated C-band bandpass filter using dielectric resonators. From waveguide cutoff frequency which applied the region between adjacent dielectric resonators, the height of cavity is determined. The cavity's diameter is determined to the twice of dielectric resonator's diameter considering the conductor loss. The resonant frequency of the DR-cavity is calculated with travelling wave mode analysis. Conventionally, circular cylindrical dielectric resonator is analysed by Cohn's model which use the evanescent mode in the region between dielectric resonator wall and circular cavity wall, which is an approximated method. The external quality factor, Q$_{ex}$ has found with simulation result using Ansoft's Maxwell simulation tool. The designed filter using dielectric resonators with dielectric constant of 45 has the passband center at 5.065GHz. The bandpass filter using dielectric resonators have about 1dB insertion loss. 20MHz bandwidth and more than 30dB attenuation at f$_{0}$$\pm$15MHz.z.z.

  • PDF

Second order grating CCGSE-DFB 레이저 해석 (Concentric-Circle-Grating Surface Emitting (CCGSE)-DFB Laser with second order grating)

  • 박해령;김효창;이연호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(2)
    • /
    • pp.313-316
    • /
    • 2000
  • Concentric-Circle-Grating (CCG) cavity is analyzed by coupled mode theory. In this case concentric grating is acting as both feedback element and output coupler. In our calculations radiation loss terms are included in guided coupled mode equations. The surface-emitted field distribution is obtained in self-consistent manner.

  • PDF

큰에디모사기법을 이용한 공동 주위의 압축성유동 해석 (LARGE EDDY SIMULATION OF THE COMPRESSIBLE FLOW OVER A OPEN CAVITY)

  • 오건제
    • 한국추진공학회지
    • /
    • 제7권1호
    • /
    • pp.40-48
    • /
    • 2003
  • 큰에디모사기법을 사용하여 압축성 공동유동을 수치해석하였다. Dynamic 모델을 사용하여 모델상수를 구했으며 공간으로 6차 유한차분기법, 시간에 대하여 4차 Runge-Kutta 수치기법을 사용하였다. 공동 주위의 유동을 보면 중심선을 따른 전단유동의 발달, 에디의 발생과 소멸 현상을 잘 볼 수 있었다. 유동결과로부터 예측된 공진 주파수는 Rossiter의 실험식 결과와 비교적 잘 일치하였다. 평균 유선의 분포는 공동의 중심선을 따라서 평행하였으며 공동 내부 후반부에서 압력이 급격히 감소됨을 알 수 있었다.

공기층을 갖는 실제덕트 구조물에서의 소음저감에 관한 연구 (A study on the noise reduction of practical duct system with the air cavity)

  • 김찬묵;이두호;방극호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1687-1692
    • /
    • 2000
  • In this paper, experimental methods to find acoustic characteristics of acoustically treated air-conditioning duct system are proposed. Existing methods to analyze acoustic properties of duct with absorbent material have a dilemma which has to assume the wave in duct to be a plane wave. Under this assumption, applicable frequency limitation makes accurate analysis of practical air-conditioning system impossible. In order to analyze the properties of in-lined treated absorbent with high degree of accuracy, in this experiments the range of exciting frequency of sound source is broadband, which means that source speaker excites higher mode of in-duct sound field. Also, to define the relations of air cavity to the acoustic characteristics, acoustic experiments on ducts with air cavity of different depth are operated. In conclusion, air-cavity makes the absorbing ability of duct improved in low frequency range. Due to the interactions between the air cavity depth and the depth of absorbents, according to depth of cavity, the magnitude of absorption coefficients vs frequencies in specific range is changed. In lower frequency range, the absorption of sound energy by air cavity is more dominant than by absorbent itself, in higher range, the inversion is true.

  • PDF

분광 영역 모드록킹 레이저를 이용한 공진형 광섬유 격자 센서 (Resonance Fiber Bragg Grating Sensor system based on Fourier Domain Mode-locking Laser)

  • 최병권;전민용
    • 한국광학회지
    • /
    • 제23권5호
    • /
    • pp.211-216
    • /
    • 2012
  • 본 논문은 분광 영역 모드록킹(Fourier domain mode-locking: FDML) 레이저를 기반으로 공진형 광섬유 격자 센서를 구현한 결과를 보고한다. FDML 레이저는 파브리-페롯 가변 필터를 이용하여 링 형태로 구성하며, 레이저 공진기 안에 광섬유 격자 2개를 한 쌍으로 하여 센서부 2개를 삽입한 구조이다. 광섬유 격자는 반사 거울 역할을 하며, 광섬유 격자의 위치에 따라 독립된 FDML 레이저 공진기를 구성한다. 각각 센서부의 공진 주파수는 46.687 kHz 와 44.340 kHz이다. FBG 센서 시스템에 정적 및 동적 스트레인을 가하였으며, 정적 스트레인에 대해 파장 영역과 시간 영역에서 측정된 스트레인에 대한 변화율은 각각 $0.61pm/{\mu}{\epsilon}$, $0.8ns/{\mu}{\epsilon}$ 이다.