• Title/Summary/Keyword: Cavity design

Search Result 713, Processing Time 0.029 seconds

Analysis and Optimization of Passive intermodulation in Microwave Coaxial Cavity Filters

  • Cho, In-Kui;Kim, Jin-Tae;Jeong, Myung-Yung;Choy, Tae-Goo;Kang, Young-Il
    • ETRI Journal
    • /
    • v.25 no.2
    • /
    • pp.133-139
    • /
    • 2003
  • We studied how the passive intermodulation (PIM) power arising in air cavity filters could be calculated and how the design of the filter could be optimized in order to reduce the amplitude of the PIM signal. To do this, using simulated results, we optimized the various parameters of a filter. PIM in an air cavity filter depends on the power dissipated in its cavities. A reduction of this power loss therefore decreases the PIM power in the air cavity filter. Our experimental results confirm that it is possible to design and produce air cavity filters that generate low PIM signals.

  • PDF

Injection Mold with Cavity Pressure/Temperature Sensors for Standard Tensile Test Specimen (내압력.온도센서를 갖는 표준 인장시편용 사출금형)

  • Lee, Do-Myoung;Han, Byoung-Kee;Lee, Sung-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.84-90
    • /
    • 2007
  • In this study, design and manufacturing of plastic injection mold with cavity pressure/temperature sensors were performed fur tensile test specimen. International standard system for plastic tensile specimen was applied to design an injection molding system. Cavity pressure and temperature sensors were placed on the side of fixed platen of the injection mold to prevent them from external impact damage. Injection molding experiments with variations of injection speed and melt temperature were performed and then tensile test of the manufactured polycarbonate specimens was also performed. It was shown that injection molding processing parameters can have effect on the mechanical properties of the plastic injection molded part.

A study on coupling effect during lifting (다수 캐비티 사출금형에서 충전 불균형 원인 분석 및 스크류 런너 디자인)

  • Kang, Min-A;Kim, Hae-Yeon;Lyu, Min-Young
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.155-158
    • /
    • 2008
  • Flow imbalance among the cavities was often observed in multi-cavity mold. The flow imbalance affects on the dimensions and physical properties of molded articles. First of all, the origin of flow imbalance is geometrical imbalance of delivery system. However, even the geometry of delivery system is balanced the cavity imbalance is being developed. This comes from the temperature distribution in the cross-section of runner, which is affected by the operational conditions. In this study, experimental study of flow imbalance has been conducted for various injection speeds. This study also suggests new runner design to eliminate flow imbalance in multi-cavity injection mold. Simulation and experimental results showed suggested new designed runner could eliminate or reduce flow imbalance in multi-cavity injection mold.

  • PDF

An Optical Cavity Design for an Infrared Gas Detector Using an Off-axis Parabolic Mirror

  • Jeong, You-Jin;Kang, Dong-Hwa;Seo, Jae-Yeong;Jo, Ye-Ji;Seo, Jin-Hee;Choi, Hwan-Young;Jung, Mee-Suk
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.374-381
    • /
    • 2019
  • This study examined a method for designing the optical cavity of a non-dispersive infrared gas detector. The infrared gas detector requires an optical cavity design to lengthen the ray path. However, the optical cavity with multiple reflecting surfaces has off-axis aberration due to the characteristics of the reflecting optical system. The rays were parallelized by using the off-axis parabolic mirror to easily increase the ray path and eliminate off-axis aberration so that the rays are admitted to the effective area of the infrared detector uniformly. A prototype of an infrared gas detector was produced with the designed optical cavity to confirm the performance.

Modelling the Mode Behavior of Circular Vertical-Cavity Surface-Emitting Laser

  • Ho, Kwang-Chun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.4 no.2
    • /
    • pp.22-27
    • /
    • 2012
  • The design characteristics of circular vertical-cavity surface-emitting lasers are studied by using a newly developed equivalent network. Optical parameters, such as the stop-band or the reflectivity of periodic mirrors and the resonance wavelength, are explored for the design of these structures. To evaluate the differential quantum efficiency and the threshold current density, a transverse resonance condition of modal transmission-line theory is also utilized. This approach dramatically reduces the computational time as well as gives an explicit insight to explore the optical characteristics of circular vertical-cavity surface-emitting lasers (VCSELs).

A STUDY ON COMPARISON OF VARIOUS KINDS OF CLASSII AMALGAM CAVITIES USING FINITE ELEMENT METHOD (유한요소법을 이용한 수종 2급 아말감 와동의 비교연구)

  • Seok, Chang-In;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.432-461
    • /
    • 1995
  • The basic principles in the design of Class II amalgam cavity preparations have been modified but not changed in essence over the last 90 years. The early essential principle was "extension for prevention". Most of the modifications have served to reduce the extent of preparation and, thus, increase the conservation of sound tooth structure. A more recent concept relating to conservative Class II cavity preparations involves elimination of occlusal preparation if no carious lesion exists in this area. To evaluate the ideal ClassII cavity preparation design, if carious lesion exists only in the interproximal area, three cavity design conditions were studied: Rodda's conventional cavity, simple proximal box cavity and proximal box cavity with retention grooves. In this study, MO amalgam cavity was prepared on maxillary first premolar. Three dimensional finite element models were made by serial photographic method. Linear, eight and six-nodal, isoparametric brick elements were used for the three dimensional finite element model. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. Three types model(B option, Gap option and R option model) were developed. B option model was assumed perfect bonding between the restoration and cavty wall. Gap option model(Gap distance: $2{\mu}m$) was assumed the possibility of play at the interface simulated the lack of real bonding between the amalgam and cavity wall (enamel and dentin). R option model was assumed non-connection between the restoration and cavty wall. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as followed. 1. Rodda's cavity form model showed greater amount of displacement with other two models. 2. The stress and strain were increased on the distal marginal ridge and buccopulpal line angle in Rodda's cavity form model. 3. The stress and strain were increased on the central groove and a part of distal marginal ridge in simple proximal box model and proximal box model with retention grooves. 4. With Gap option, Rodda's cavity form model showed the greatest amount of the stress on distal marginal ridge followed by proximal box model with retention grooves and simple proximal box model in descending order. 5. With Gap option, simple proximal box model showed greater amount of stress on the central groove with proximal box model with retention grooves. 6. Retention grooves in the proximal box played the role of supporting the restorations opposing to loads.

  • PDF

Numerical Investigation of the Cover-Plates Effects on the Rectangular Open Cavity (직사격형 공동에서 덮개 효과에 대한 수치적 연구)

  • 허대녕;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.457-464
    • /
    • 2001
  • The aeroacoustic phenomena in the simple rectangular open cavity are well published by many researchers. But the geometry shapes of aircraft landing gear wells, weapon bays, etc. are more complicate than that of the simple retangular cavity. They are more similar to the cavity having cover-plates at adges, or Helmholtz resonator. Therefore, the effects of cover-plates existing on edges of rectangular open cavity are numerically investigated in this paper. The compressible Navier-Stokes equations are solved for two-dimensional cavities with laminar boundary layers upstream. The high-order and high-resolution numerical schemes are used for the evaluation of spatial derivatives and the time integration. Physically correct numerical boundary conditions and buffer zone techniques are implemented to produce time-accurate solutions in the whole computation domain. The computational domain is large enough to directly resolve a portion of the radiated acoustic field. Results show that the cover-plates existing on edges of cavity reduce the noise convected from cavity, make the frequency of noise become higher, and change the directivity pattern. So these results can be used in the design of a low noise cavity.

  • PDF

A Robust Design Study of Air Bearing Slider for HDD (HDD용 에어베어링 슬라이더의 강건설계에 관한 연구)

  • 전규찬;장동섭;좌성훈
    • Tribology and Lubricants
    • /
    • v.16 no.4
    • /
    • pp.247-252
    • /
    • 2000
  • As the demand for higher areal recording densities requires a lower flying height of the slider, the variation of the flying height of the slider during drive operation becomes of great concern. The variation of the flying height is closely related with the slider design parameters such as air bearing shape, cavity depth, shallow step depth, crown, camber, pitch offset, roll offset, gram load, and so on. The objective of this work is to optimize the cavity depth and the shallow step depth, which are the control factors in air bearing design, using Robust Design method. It was found that the shallow step depth was statistically significant in affecting the variation of flying height, therefore the level of the shallow step depth should be chosen to minimize the variation of flying height.

ANC in the small cavity using CDM (CDM을 이용한 소형 밀폐 공간 내의 소음제어)

  • Park, Jang-Kwan;Koo, Choon-Keun;Lee, Hae-Soo;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.982-984
    • /
    • 1999
  • For active noise control system, one would choose one of two methods: Fixed control design and Adaptive filter design. Each one has its own advantages. But fixed controller design method prefer for active noise control in a small cavity system. In this paper, we design a controller for the small cavity system using CDM and compare controller using CDM with $H{\infty}$. The order of the resulting controller is lower than that of the robust $H{\infty}$ design, which means CDM will be more prefer for implementation purpose designs.

  • PDF

Design and simulation of 500 MHz single cell superconducting RF cavity for SILF

  • Yanbing Sun;Wei Ma;Nan Yuan;Yulin Ge;Zhen Yang;Liping Zou;Liang Lu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.195-206
    • /
    • 2024
  • Shenzhen Innovation Light source Facility (SILF) is a 3.0 GeV fourth generation diffraction limited synchrotron light source currently under construction in Shenzhen. The SILF storage ring is proposed to use two 500 MHz single cell superconducting radio frequency (SRF) cavities to provide 2.4 MV RF voltage. In this study, we examined the geometric structure of mature CESR superconducting cavities and adopted a beam-pipe-type extraction scheme for high-order modes (HOM). One of the objectives of SRF cavity design and optimization in this study is to reduce Ep/Eacc and Bp/Eacc as much as possible to reduce power loss and ensure stable operation of the cavity. To reduce the risk of beam instability and thermal breakdown, the HOM and Multipacting (MP) are simulated. Moreover, the mechanical properties of the cavity are analyzed, including frequency sensitivity from pressure of liquid helium (LHe), stress, tuning, Lorentz force detuning (LFD), the microphone effect, and buckling. By comprehensive design and optimization of 500 MHz single-cell SRF cavities, a superconducting cavity for SILF storage ring was developed. This paper will detailed present the design and simulation.