• Title/Summary/Keyword: Cavity Wall

Search Result 546, Processing Time 0.026 seconds

Effect of a Magnetic Field on Mixed Convection of a Nanofluid in a Square Cavity

  • Sheikhzadeh, G.A.;Sebdani, S. Mazrouei;Mahmoodi, M.;Safaeizadeh, Elham;Hashemi, S.E.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.321-325
    • /
    • 2013
  • The problem of mixed convection in a differentially heated lid-driven square cavity filled with Cu-water nanofluid under effect of a magnetic field is investigated numerically. The left and right walls of the cavity are kept at temperatures of $T_h$ and $T_c$ respectively while the horizontal walls are adiabatic. The top wall of the cavity moves in own plane from left to right. The effects of some pertinent parameters such as Richardson number (ranging from 0.1 to 10), the volume fraction of the nanoparticles (ranging 0 to 0.1) and the Hartmann number (ranging from 0 to 60) on the fluid flow and temperature fields and the rate of heat transfer in the cavity are investigated. It must be noted that in all calculations the Prandtl number of water as the pure fluid is kept at 6.8, while the Grashof number is considered fixed at 104. The obtained results show that the rate of heat transfer increases with an increase of the Reynolds number, while but it decreases with increase in the Hartmann number. Moreover it is found that based the Richardson and Hartmann numbers by increase in volume fraction of the nanoparticles the rate of heat transfer can be enhanced or deteriorated compared to the based fluid.

SIMULATION OF LID DRIVEN CAVITY FLOW WITH DIFFERENT ASPECT RATIOS BY MULTI-RELAXATION-TIME LATTICE BOLTZMANN METHOD (다중완화시간 격자 볼츠만기법을 이용한 다양한 종횡비의 리드드리븐 공동유동 수치해석연구)

  • Huang, Tingting;Song, Juhun;Lim, Hee-Chang
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.42-51
    • /
    • 2020
  • This study performs a numerical simulation of lid driven rectangular cavity flow with different aspect ratios of k = 0.5 to 4 under Reynolds 100, 1,000, 10,000 by using multi-relaxation time (MRT) Lattice Boltzmann Method (LBM). In order to achieve better convergence, well-posed boundary conditions in the domain should be defined such as no-slip condition on side and bottom solid wall surfaces and uniform horizontal velocity on the top of the cavity. This study focuses on the flow inside different shape of rectangular cavity with the aim to observe the effect of the Reynolds number and aspect ratio on the flow characteristics and primary/secondary vortex formation. In order to validate the study, the results have been compared with existing works. The result shows that the Reynolds number and the aspect ratio both has substantial effects on the flow inside the lid-driven rectangular cavity.

A Measurement of Temperature by TLC without Contact and A Study of Thermocapillary Flow under Ground-based Conditions (TLC 비접촉 온도측정과 중력장에서 열모세관 현상 구명)

  • 엄용균;유재봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1071-1075
    • /
    • 2003
  • In a closed square cavity filled with a liquid, a cooled the upper horizontal wail and a heated the lower horizontal wall, the flow isn't generated under the ground-based condition when Rayleigh number is lower than 1700. In such case the flow phenomena near an air bubble under a cooled horizontal wall were investigated. The temperature and the flow fields were studied by using the Thermo-sensitive Liquid-Crystal and the image processing. The qualitative analysis for the temperature and the flow fields were carried out by applying the image processing technique to the original data. Injecting bubble at the center point of upper cooled wall, the symmetry shape of two vortexes near an air bubble was observed. The bubble size increased, the size of velocity and the magnitude of velocity increased. In spite of elapsed time, a pair of two vortexes was the unique and steady-state flow in a square cavity and wasn't induce to the other flow in the surround region.

  • PDF

Acoustic resonance and refrigerating capability of a Hofler type thermoacoustic refrigerating system (Hofler 타입 열음향 냉장시스템의 공진특성과 냉장성능)

  • Hah, Zae-Gyoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.76-80
    • /
    • 1997
  • Acoustic resonance characteristics were analyzed and their effect on the refrigerating capability were experimentally verified on a fabricated Hofler-type thermoacoustic refrigerating system. Factors governing the overall resonance are the resonator composed of a cavity and two pipes, the loudspeaker driving the resonator, and rear side impedance characteristics of speaker housing. All these are coupled with electric constants of the speaker to exhibit electric resonance. Also the 'wall-effect' within the resonator causes attenuation to reduce the sharpness of the resonance. Analysis and experiments showed housing and the wall-effect of the resonator reduce the sharpness of resonance. Maintaining the accuracy of the resonance is, therefore, very important for efficient refrigeration.

  • PDF

Extracuterine Pregnancy in a Bitch (개의 자궁외 임신 증례)

  • 김휘율;한규보;김현수;김종성;임희란
    • Journal of Veterinary Clinics
    • /
    • v.17 no.1
    • /
    • pp.275-278
    • /
    • 2000
  • A 3-year-old yorkshire terrier was examined because of the green-like vaginal discharge. Abdominal ultrasonographs revealed dead fetuses in the abdominal cavity. Surgical exploration revealed fetuses located in the region of the uterine wall, the omentum, the ileum, and the upper right side of the liver respectively. Fetal structures were removed and an ovariohysterectomy was performed. The abdominal cavity was flushed with warm saline and then the incision closed. These fetuses were at different stages of development. It was suggested that the development of the fetuses apparently continued in extrauterine pregnancy until the blood supply became inadquate for further growth.

  • PDF

SLOW VISCOUS FLOW PAST A CAVITY WITH INFINITE DEPTH

  • Kim, D.W;Kim, S.B;Chu, J.H
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.801-812
    • /
    • 2000
  • Two-dimensional slow viscous flow on infinite half-plane past a perpendicular infinite cavity is considered on the basis of the Stokes approximation. Using complex representation of the two-dimensional Stokes flow, the problem is reduced to solving a set of Fredholm integral equations of the second kind. The streamlines and the pressure and vorticity distribution on the wall are numerically determined.

Experimental Analysis on the Heat Transfer Characteristics of Magnetic Fluids in a Cubic Cavity (자성유체의 밀폐공간내의 열전달 특성에 관한 실험적 연구)

  • Park, Joung-Woo;Seo, Lee-Soo;Chen, Chel-Ho;Park, Gil-Moon
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.3
    • /
    • pp.127-132
    • /
    • 2003
  • Natural convection of a magnetic fluid is different from that of Newtonian fluids because magnetic-body force exists in addition to gravity and buoyancy. In this paper, natural convection of a magnetic fluids (W-40) in a cubic cavity was examined by experimental method. One side wall was kept at a constant temperature (25 $^{\circ}C$), and the opposite side wall was also held at a constant but lower temperature (20 $^{\circ}C$). The magnetic fields of various magnitude were applied up and down by permanent magnets. We measured temperatures at 5 points which are the most suitable places in cavity by the analysis record. The thermo-sensitive liquid crystal film (R20C5A) was utilized in order to visualize wall-temperature distributions. Several kinds of experiments were carried out in order to clarify the influence of direction and intensity of magnetic fields on the natural convection. It was found that the natural convection of a magnetic fluids could be controlled by the direction and intensity of the magnetic fields.

Orbital wall restoring surgery with primary orbital wall fragments in blowout fracture

  • Kang, Dong Hee
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.6
    • /
    • pp.347-353
    • /
    • 2019
  • Most orbital surgeons believe that it's difficult to restore the primary orbital wall to its previous position and that the orbital wall is so thin that cannot be firmly its primary position. Therefore, orbital wall fractures generally have been reconstructed by replacing the bony defect with a synthetic implant. Although synthetic implants have sufficient strength to maintain their shape and position in the orbital cavity, replacement surgery has some drawbacks due to the residual permanent implants. In previous studies, the author has reported an orbital wall restoring technique in which the primary orbital wall fragment was restored to its prior position through a combination of the transorbital and transantral approaches. Simple straight and curved elevators were introduced transnasally to restore the orbital wall and to maintain temporary extraorbital support in the maxillary and ethmoid sinus. A transconjunctival approach provided sufficient space for implant insertion, while the transnasal approach enabled restoration of the herniated soft tissue back into the orbit. Fracture defect was reduced by restoring the primary orbital wall fragment to its primary position, making it possible to use relatively small size implant, furthermore, extraorbital support from both sinuses decreased the incidence of implant displacement. The author could recreate a natural shape of the orbit with the patient's own orbital bone fragments with this dual approach and effectively restored the orbital volume and shape. This procedure has the advantages for retrieving the orbital contents and restoring the primary orbital wall to its prior position.

The effect of cavity wall property on the shear bond strength test using iris method (Iris 법을 이용한 전단접착강도 측정에서 와동벽의 영향)

  • Kim, Dong-Hwan;Bae, Ji-Hyun;Cho, Byeong-Hoon;Lee, In-Bog;Baek, Seung-Ho;Ryu, Hyun-Mi;Son, Ho-Hyun;Um, Chung-Moon;Kwon, Hyuck-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.2
    • /
    • pp.170-176
    • /
    • 2004
  • Objectives : In the unique metal iris method. the developing interfacial gap at the cavity floor resulting from the cavity wall property during polymerizing composite resin might affect the nominal shear bond strength values. The aim of this study is to evaluate that the iris method reduces the cohesive failure in the substrates and the cavity wall property effects on the shear bond strength tests using iris method. Materials and Methods : The occlusal dentin of 64 extracted human molars were randomly divided into 4 groups to simulate two different levels of cavity wall property (metal and dentin iris) and two different materials ($ONE-STEP^{\circledR}$ and $ALL-BOND^{\circledR}$ 2) for each wall property. After positioning the iris on the dentin surface. composite resin was packed and light-cured. After 24 hours the shear bond strength was measured at a crosshead speed of 0.5 mm/min. Fracture analysis was performed using a microscope and SEM. The data was analyzed statistically by a two-way ANOV A and t-test. Results : The shear bond strength with metal iris was significant higher than those with dentin iris (p=0.034). Using $ONE-STEP^{\circledR}$, the shear bond strength with metal iris was significant higher than those with dentin iris (p=0.005), but not in $ALL-BOND^{\circledR}$ 2 (p=0.774). The incidence of cohesive failure was very lower than other shear bond strength tests that did not use iris method. Conclusions:The iris method may significantly reduce the cohesive failures in the substrates. According to the bonding agent systems. the shear bond strength was affected by the cavity wall property.

A Study on Improvement of Flow Characteristics for Thin-Wall Injection Molding by Rapid Mold Heating (급속 금형가열에 의한 박육 사출성형의 유동특성 개선에 관한 연구)

  • Park Keun;Kim Byung H.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.15-20
    • /
    • 2006
  • The rapid thermal response (RTR) molding is a novel process developed to raise the temperature of mold surface rapidly to the polymer melt temperature prior to the injection stage and then cool rapidly to the ejection temperature. The resulting filling process is achieved inside a hot mold cavity by prohibiting formation of frozen layer so as to enable thin wall injection molding without filling difficulty. The present work covers flow simulation of thin wall injection molding using the RTR molding process. In order to take into account the effects of thermal boundary conditions of the RTR mold, coupled analysis with transient heat transfer simulation is suggested and compared with conventional isothermal analysis. The proposed coupled simulation approach based on solid elements provides reliable thin wall flow estimation for both the conventional molding and the RTR molding processes.