• Title/Summary/Keyword: Cavitation instabilities

Search Result 17, Processing Time 0.021 seconds

High Frequency Signal Analysis of LOx Pump for Liquid Rocket Engine under Cavitating Condition (캐비테이션 환경에서의 액체로켓엔진용 산화제펌프의 고주파 신호 분석)

  • Kim, Dae-Jin;Kang, Byung Yun;Choi, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1093-1098
    • /
    • 2017
  • High frequency signals are analyzed which are measured at the inlet / outlet pipeline and pump casing during cavitation tests of the LOx pump for the liquid rocket engine. RMS values of data are shown according to the cavitation number. RMS values of the synchronous frequency, its harmonic frequencies and frequencies of cavitation instabilities are also calculated. The pressure pulsations of the inlet and outlet pipeline are affected by cavitation instabilities. 3x component is predominant in the outlet pulsation sensor since 3x component generated at the inducer is amplified at the impeller. The cavitation instability is also found at the accelerometer signal of the casing.

  • PDF

CFD Analysis of Cavitation Phenomena in Mixed-Flow Pump

  • Sedlar, Milan;Sputa, Oldrich;Komarek, Martin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.1
    • /
    • pp.18-29
    • /
    • 2012
  • This paper deals with the CFD analysis of cavitating flow in the mixed-flow pump with the specific speed of 1.64 which suffers from a high level of noise and vibrations close to the optimal flow coefficient. The ANSYS CFX package has been used to solve URANS equations together with the Rayleigh-Plesset model and the SST-SAS turbulence model has been employed to capture highly unsteady phenomena inside the pump. The CFD analysis has provided a good picture of the cavitation structures inside the pump and their dynamics for a wide range of flow coefficients and NPSH values. Cavitation instabilities were detected at 70% of the optimal flow coefficient close to the NPSH3 value (NPSH3 is the net positive suction head required for the 3% drop of the total head of the pump).

Internal Flow of a Two-Bladed Helical Inducer at an Extremely Low Flow Rate

  • Watanabe, Satoshi;Inoue, Naoki;Ishizaka, Koichi;Furukawa, Akinori;Kim, Jun-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • The attachment of inducer upstream of main impeller is an effective method to improve the suction performance of turbopump. However, various types of cavitation instabilities are known to occur even at the designed flow rate as well as in the partial flow rate region. The cavitation surge occurring at partial flow rates is known to be strongly associated with the inlet back flow. In the present study, in order to understand the detailed structure of internal flow of inducer, we firstly carried out the experimental and numerical studies of non-cavitating flow, focusing on the flow field near the inlet throat section and inside the blade passage of a two bladed inducer at a partial flow rate. The steady flow simulation with cavitation model was also made to investigate the difference of flow field between in the cavitating and no-cavitating conditions.

High Frequency Signal Analysis of LOx Pump for Liquid Rocket Engine under Cavitating Condition (캐비테이션 환경에서의 액체로켓엔진용 산화제펌프의 고주파 신호 분석)

  • Kim, Dae-Jin;Kang, Byung Yun;Choi, Chang-Ho;Bae, Joon-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.61-67
    • /
    • 2018
  • High-frequency signals are analyzed at the inlet/outlet pipeline and pump casing during cavitation tests of the LOx pump for liquid rocket engines. Root-mean square values of all data are investigated with respect to cavitation number. The values of synchronous, harmonic, and cavitation instability frequencies are also calculated. Pressure pulsations of the inlet and outlet pipelines are affected by cavitation instabilities. The 3x component (i.e., the blade-passing frequency of the inducer) is predominant in the outlet pulsation sensor. This seems to be related to the fact that the number of impeller blades is a multiple of the number of the inducer blades. The cavitation instability is also measured at the accelerometer of the pump casing.

Choked Surge in a Cavitating Turbopump Inducer

  • Watanabe, Toshifumi;Kang, Dong-Hyuk;Cervone, Angelo;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.64-75
    • /
    • 2008
  • During an experimental investigation on a 3-bladed and a 4-bladed axial inducer, a severe surge instability was observed in a range of cavitation number where the blade passage is choked and the inducer head is decreased from noncavitating value. The surge was stronger for the 4-bladed inducer as compared with a 3-bladed inducer with the same inlet and outlet blade angles. For the 4-bladed inducer, the head decreases suddenly as the cavitation number is decreased. The surge was observed after the sudden drop of head. This head drop was found to be associated with a rapid extension of tip cavity into the blade passage. The cause of surge is attributed to the decrease of the negative slope of the head-flow rate performance curve due to choke. Assuming that the difference between the 3 and 4-bladed inducers is caused by the difference of the blockage effects of the blade, a test was carried out by thickening the blades of the 3-bladed inducer. However, opposite to the expectations, the head drop became smoother and the instability disappeared on the thickened blade inducer. Examination of the pressure distribution on both inducers could not explain the difference. It was pointed out that two-dimensional cavitating flow analyses predict smaller breakdown cavitation number at higher flow rates, if the incidence angle is smaller than half of the blade angle. This causes the positive slope of the performance curve and suggests that the choked surge as observed in the present study might occur in more general cases.

J-Groove Technique for Suppressing Various Anomalous Flow Phenomena in Turbomachines

  • Kurokawa, Junichi
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • In operating a turbomachine at off-design conditions various instabilities caused by anomalous flow phenomena occur and sometimes lead to the damage of a turbomachine. In order to avoid these phenomena various devices characteristic to each phenomenon have been developed, however they make turbomachines large-sized and cause efficiency drop. The present author has developed a very simple and innovative device, termed "J-groove," of suppressing various anomalous flow phenomena commonly by controlling the angular momentum of the main flow. It has been revealed that J-groove makes an operation of a turbomachine stable in all flow range, causes little efficiency drop, and can be easily applied to an existing machine. Here is reviewed totally the results of suppressing various anomalous flow phenomena in turbomachines.

Analysis of the Unstable Propeller Wake Using POD Method (POD(Proper Orthogonal Decomposition) 방법을 이용한 불안정한 프로펠러 후류 해석)

  • Paik, Bu-Geun;Kim, Kyung-Youl;Kim, Ki-Sup;Lee, Jung-Yeop;Lee, Sang-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.20-29
    • /
    • 2010
  • The complicated flow characteristics of upper propeller wake influenced by hull wake are investigated in detail in the present study. A two-frame PIV (particle image velocimetry) technique was employed to visualize the upper propeller wake region. As the upper hull wake affects strongly propeller inflow, upper propeller wake shows much unstable vortical behavior, especially in the tip vortices. Velocity field measurements were conducted in a cavitation tunnel with a simulated hull wake. Generally, the hull wake generated by the hull of a marine ship may cause different loading distributions on the propeller blade in both upper and lower propeller planes. The unstable upper propeller wake caused by the ship's hull is expressed in terms of turbulent kinetic energy (TKE) and is identified by using the proper orthogonal decomposition (POD) method to characterize the coherent flow structure in it. Instabilities appeared in the eigen functions higher than the second one, giving unsteadiness to the downstream flow characteristics. The first eigen mode would be useful to find out the tip vortex positions immersed in the unstable downstream region.