• 제목/요약/키워드: Cavitation flow

검색결과 542건 처리시간 0.021초

2차원 혼 타 단면의 간극유동 특성에 대한 연구 (Characteristics of Gap Flow of a 2-Dimensional Horn-Type Rudder Section)

  • 최정은;정석호
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.101-110
    • /
    • 2007
  • Recently, rudder erosion due to cavitation frequently has occurred at large high speed container carriers. Especially, in the case of a horn-type rudder, the rudder erosion is severe around a gap. The gap-flow characteristics are investigated through a computational method to understand the effects of a gap on the cavitation and rudder efficiency. A viscous flow theory utilizing a cavitation model is applied to calculate the flow around idealized 2-dimensional rudder sections in a full scale. The effects of gap clearance and flow-control projection are also investigated. From the computational results, the mass flow rate through a gap is found to be one of the important parameters to affect the cavitation and rudder efficiency.

FLUENT 코드를 이용한 타 단면의 점성 유동 해석 (Viscous Flow Analysis for the Rudder Section Using FLUENT Code)

  • 부경태;한재문;송인행;신수철
    • 대한조선학회논문집
    • /
    • 제40권4호
    • /
    • pp.30-36
    • /
    • 2003
  • Lately, the cavitation and erosion phenomena in the rudder have been increased for high-speed container ships. However, cavitation is not prone to occur in model experiments because of low Reynolds number. In order to predict the cavitation phenomena, the - analysis of the viscous flow in the rudder gap is positively necessary In this study, numerical calculation was applied to the two-dimensional flow around the rudder gap using FLUENT code. The velocity and pressure field were numerically acquired and cavitation phenomena could be predicted. And the case that the round bar was installed in the rudder gap was analyzed. For reducing the acceleration force when fluid flow through the gap, modified rudder shape is proposed, It is shown that modified rudder shape restrain the pressure drop at the entrance of the gap highly both in the computational results and in the model experiment, and reduce the cavitation bubbles.

Numerical Evaluation of Dynamic Transfer Matrix and Unsteady Cavitation Characteristics of an Inducer

  • Yonezawa, Koichi;Aono, Jun;Kang, Donghyuk;Horiguchi, Hironori;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제5권3호
    • /
    • pp.126-133
    • /
    • 2012
  • The transfer matrix and unsteady cavitation characteristics, cavitation compliance and mass flow gain factor, of cavitating inducer were evaluated by CFD using commercial software. Quasi-steady values of cavitation compliance and mass flow gain factor were obtained first by using steady calculations at various flow rate and inlet cavitation number. Then unsteady calculations were made to determine the transfer matrix and the cavitation characteristics. The results are compared with experiments to show the validity of calculations.

Turbulence Generation by Ultrasonically Induced Gaseous Cavitation in the $CO_2$Saturated Water Flow

  • Lee, Seung-Youp;Park, Young-Don
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1203-1210
    • /
    • 2003
  • Emission of ultrasonic vibration to turbulent flow promotes the turbulence generation due to the resonantly oscillating pressure field and thereby induced cavitation. In addition, ultrasonic vibration is well transmitted through water and not dissipated easily so that the micro-bubbles involved in the fluid induce the gaseous cavitation if the bubbles are resonated with the ultrasonic field. In the present study, we found through LDV measurement that the gaseous cavitation induced by ultrasonic vibration to CO$_2$saturated water flow in the rectangular cross-sectioned straight duct enhances turbulence much more than the case of non-ultrasonic or normal ultrasonic conditions without gaseous cavitation. We also found that the fluctuating velocity component induced by emitting the ultrasonic vibration in normal direction of a rectangular channel flow can be redistributed to stream-wise component by the agitation of gaseous cavitation.

Anti-Cavitation Trim을 갖는 고차압 제어밸브의 유동특성에 관한 수치해석 (Numerical Analysis on Flow Characteristics of High Pressure Drop Control Valves with Anti-Cavitation Trim)

  • 안영준;김병진;신병록
    • 한국유체기계학회 논문집
    • /
    • 제10권4호
    • /
    • pp.61-70
    • /
    • 2007
  • Numerical analysis of three dimensional incompressible turbulent flows in LNG marine high pressure drop control valves was carried out by using the CFD-ACE from ESI-Group. In this study, flow characteristics of control valves with complex flow fields including cavitation effect were investigated. Simulation was performed on five models of control valve that had different orifice diameters of anti-trim and the size of valve. Comparing newly designed control valves for controling the occurrence of cavitation with the conventional valve, new valves showed a improved flow pattern with almost no cavitation.

소산이 고려된 보오텍스 모델과 버블 이론을 이용한 수중익 날개 끝 보오텍스 캐비테이션 거동 및 소음의 수치적 해석 (Numerical Analysis of Tip Vortex Cavitation Behavior and Noise on Hydrofoil using Dissipation Vortex Model and Bubble Theory)

  • 박광근;설한신;이수갑
    • 대한조선학회논문집
    • /
    • 제43권2호
    • /
    • pp.177-185
    • /
    • 2006
  • Cavitation is the dominant noise source of the marine vehicle. Of the various types of cavitation , tip vortex cavitation is the first appearance type of marine propeller cavitation and it generates high frequency noise. In this study, tip vortex cavitation behavior and noise are numerically investigated. A numerical scheme using Eulerian flow field computation and Lagrangian particle trace approach is applied to simulate the tip vortex cavitation on the hydrofoil. Vortex flow field is simulated by combined Moore and Saffman's vortex core radius equation and Sculley vortex model. Tip vortex cavitation behavior is analyzed by coupled Rayleigh-Plesset equation and trajectory equation. The cavitation nuclei are distributed and released in the vortex flow result. Vortex cavitation trajectories and radius variations are computed according to nuclei initial size. Noise is analyzed using time dependent cavitation bubble position and radius data. This study may lay the foundation for future work on vortex cavitation study and it will provide a basis for proper underwater propeller noise control strategies.

설계인자 변경에 따른 버터플라이 밸브 유동 특성에 관한 연구 (CHARACTERISTIC OF BUTTERFLY VALVE FLOW WITH DIFFERENT DESIGN FACTORS)

  • 이종욱;최훈기;유근종
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.170-176
    • /
    • 2009
  • Flow control butterfly valve(FCBV) is known to have difficulty in controlling flow rate along valve opening due to its high flow rate. In low opening condition, the butterfly valve also has some shortcomings such as noise, vibration and erosion which are mostly caused by cavitation effects. Therefore, the FCBV requires proper remedies to reduce cavitation effects and to improve flow control performance. Numerical analysis is applied to FCBV flow to find effects of design factors such as seat diameter and valve opening rate. Cases with 3 different sizes of seat diameter and various valve opening rate are selected for the numerical analysis. From the analysis results, it is found that the FCBV with small seat diameter shows better pressure loss performance and reduced cavitation effects.

  • PDF

설계인자 변경에 따른 버터플라이 밸브 유동 특성에 관한 연구 (CHARACTERISTIC OF BUTTERFLY VALVE FLOW WITH DIFFERENT DESIGN FACTORS)

  • 이종욱;최훈기;유근종
    • 한국전산유체공학회지
    • /
    • 제15권1호
    • /
    • pp.64-70
    • /
    • 2010
  • Flow control butterfly valve(FCBV) is known to have difficulty in controlling flow rate along valve opening due to its high flow rate. In low opening condition, the butterfly valve also has some shortcomings such as noise, vibration and erosion which are mostly caused by cavitation effects. Therefore, the FCBV requires proper remedies to reduce cavitation effects and to improve flow control performance. Numerical analysis is applied to FCBV flow to find effects of design factors such as seat diameter and valve opening rate. Cases with 3 different sizes of seat diameter and various valve opening rate are selected for the numerical analysis. From the analysis results, it is found that the FCBV with small seat diameter shows better pressure loss performance and reduced cavitation effects.

노즐 오리피스 형상에 따른 Discharge Coefficient와 Cavitation에 관한 실험적 연구 (Experimental Study of Discharge Coefficient and Cavitation for Different Nozzle Geometries)

  • 김성열;구건우;홍정구;이충원
    • 대한기계학회논문집B
    • /
    • 제34권10호
    • /
    • pp.933-939
    • /
    • 2010
  • 본 연구는 타원형 노즐과 원형 노즐 내부에서 발생되는 cavitation의 발생 및 성장을 실험적으로 관찰하였다. 원형 노즐과 타원형 노즐의 cavitation 특성을 가시화 하기위해 투명한 아크릴로 노즐을 제작하였다. 실험에 사용된 노즐들은 같은 단면적으로 제작되었으며, 타원형 노즐의 경우 형상비(a/b)를 다르게 하였다. 분사압력의 증가에 따라 노즐내부 유동은 no cavitation, cavitation, hydraulic flip 영역으로 나뉘어졌다. 노즐의 형상에 상관없이 no cavitation과 cavitation 영역에서는 분사압력의 증가에 따라 유량은 증가하며, 유출계수는 감소하는 경향을 나타냈다. 그러나 hydraulic flip 영역에서의 유량계수는 일정한 값을 나타냈다. 타원형 노즐은 원형 노즐에 비해 높은 cavitation number에서 cavitation이 성장, 발달하였다. 특히 타원형 노즐에서는 장축의 cavitation length가 단축보다 길게 나타났다.

Numerical Simulation for the Rudder in order to Control the Cavitation Phenomena

  • Boo, Kyung-Tae;Song, In-Hang;Soochul Shin
    • Journal of Ship and Ocean Technology
    • /
    • 제8권1호
    • /
    • pp.42-50
    • /
    • 2004
  • In these ten years, the cavitation and erosion phenomena in the rudder have been increased for high-speed container ships. The cavitation in the rudder blades which is injurious to rudder efficiency is mainly caused by the main flow with a large angle of attack induced by propellers, and the erosion which occurs as a result of repeated blows by shock wave that cavitation collapse may produce was observed in the gap legion of the rudder. However, gap cavitation is not prone to occur in model experiments because of low Reynolds number. So, the viscous effect should be considered for solving the flow of the narrow gap. In order to predict the cavitation phenomena and to improve the performance of the rudder, the analysis of the viscous flow in the rudder gap is positively necessary. In this study, numerical calculation for the solution of the RANS equation is applied to the two-dimensional flow around the rudder gap including horn part and pintle part. The velocity and pressure field are numerically acquired according to Reynolds number and the case that the round bar is installed in the gap is analyzed. For reduced the acceleration that pressure drop can be highly restrained numerically and in model experiment, the cavitation bubbles can be reduced.