• Title/Summary/Keyword: Cavitation energy

Search Result 143, Processing Time 0.029 seconds

Nonlinear Behaviors of a Gas-filled Bubble Oscillator with Large Amplitude of Excitation (큰 압력 진폭에 의해 구동되는 기포진동체의 비선형 거동 특성)

  • 김동혁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.116-124
    • /
    • 2002
  • The bubble model by Keller and Prosperetti is adapted to solve the nonlinear oscillation of a gas bubble. This formulation leads to accurate results since it introduces the energy equation instead of the polytropic assumption for the bubble interior. The numerical method used in this study is stable enough to handle large amplitude of bubble oscillation. The numerical results show some interesting nonlinear phenomena fur the bubble oscillator. The excitation changes the natural frequency of the bubble and makes some harmonic resonances at $f/f_0=1/2, 1/3$ and so on. The natural frequency of a bubble oscillator decreases compared with the linear case result, which means that the nonlinear bubble oscillation system is a "softening"system. In addition, the frequency response curve jumps up or down at a certain frequency. It is also found that there exist multi-valued regions in the frequency response curve depending on the initial conditions of bubble. The dependency of the bubble motion on the initial condition can generate extremely large pressure and temperature which might be the cause of the acoustic cavitation and the sonoluminescence.inescence.

Numerical Study of Cavitating flow around Axysimmetric and 2D Body in Cryogenic Fluid (극저온 유체내에서 운행하는 물체 주위의 공동현상 해석에 관한 연구)

  • Lee, Se-Young;Yu, Jung-Min;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.309-312
    • /
    • 2007
  • The cryogenic fluid is the propellant for the liquid rocket engine. The design of space launcher vehicle is guided by minimum size and weight criteria, so the turbo pump solicits high impeller speed. Such high speed results in a zone of pressure drop below vapor pressure causing caivtation around inducer blades. The cryogenic fluid has different characters from isothermal fluid like water. The cryogenic fluid has very sensible thermodynamic properties and the phase change undergoes evaporative cooling. So, the developed code has to be modified cavitation modeling and it is added the energy equation for temperature sensitivity.

  • PDF

Visualization of Turbulent Flow Fields Around a Circular Cylinder at Reynolds Number 1.4×105 Using PIV

  • Jun-Hee Lee;Bu-Geun Paik;Seok-Kyu Cho;Jae-Hwan Jung
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.137-144
    • /
    • 2023
  • This study investigates the experimental parameters of particle image velocimetry (PIV) to enhance the measurement technique for turbulent flow fields around a circular cylinder at a Reynolds number (Re) of 1.4×105. At the Korea Research Institute of Ships & Ocean Engineering (KRISO), we utilized the cavitation tunnel and PIV system to capture the instantaneous flow fields and statistically obtained the mean flow fields. An aspect ratio and blockage ratio of 16.7% and 6.0%, respectively, were considered to minimize the tunnel wall effect on the cylinder wakes. The optimal values of the pulse time and the number of flow fields were determined by comparing the contours of mean streamlines, velocities, Reynolds shear stresses, and turbulent kinetic energy under their different values to ensure accurate and converged results. Based on the findings, we recommend a pulse time of 45 ㎲ corresponding to a particle moving time of 3-4 pixels, and at least 3,000 instantaneous flow fields to accurately obtain the mean flow fields. The results of the present study agree well with those of previous studies that examined the end of the subcritical flow regime.

Development of Wafer Cleaning Equipment Using Nano Bubble and Megasonic Ultrasound (나노 버블과 메가소닉 초음파를 이용한 반도체 웨이퍼 세정장치 개발)

  • Nohyu Kim;Sang Hoon Lee;Sang Yoon;Yong-Rae Jung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.66-71
    • /
    • 2023
  • This paper describes a hybrid cleaning method of silicon wafer combining nano-bubble and ultrasound to remove sub-micron particles and contaminants with minimal damage to the wafer surface. In the megasonic cleaning process of semiconductor manufacturing, the cavitation induced by ultrasound can oscillate and collapse violently often with re-entrant jet formation leading to surface damage. The smaller size of cavitation bubbles leads to more stable oscillations with more thermal and viscous damping, thus to less erosive surface cleaning. In this study, ultrasonic energy was applied to the wafer surface in the DI water to excite nano-bubbles at resonance to remove contaminant particles from the surface. A patented nano-bubble generator was developed for the generation of nano-bubbles with concentration of 1×109 bubbles/ml and nominal nano-bubble diameter of 150 nm. Ultrasonic nano-bubble technology improved a contaminant removal efficiency more than 97% for artificial nano-sized particles of alumina and Latex with significant reduction in cleaning time without damage to the wafer surface.

  • PDF

Evaluation of Energy Consumption through Field Measurement at the Apartment Housing Unit Using Dynamic Flow Rate Balancing (실물실험을 통한 다이나믹 유량밸런싱 적용 공동주택 세대의 에너지소비량 평가)

  • Ryu, Seong-Ryong;Cheong, Chang-Heon;Cho, Hyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • Even though the control device of the heating system works well, insufficient water flow rates can degrade control performance and thermal comfort. The water flow rate should be adjusted appropriately to cope with the heating load of each zone. In order to solve these problems, a new balancing concept 'dynamic balancing' was proposed where a balancing valve opening can be automatically modulated according to the heating condition of the room. This study analyzed the effects of dynamic balancing upon indoor thermal environment and energy consumption in a radiant floor heating system through field measurement. Under part-load conditions, the use of a dynamic balancing is a more effective method to reduce energy consumption and to prevent a cavitation. Dynamic balancing is able to help boost the temperature of a room in the start-up period.

A Study on Nozzle Flow and Spray Characteristics of Piezo Injector for Next Generation High Response Injection (차세대 고응답 분사용 피에조 인젝터의 노즐유동 및 분무특성에 관한 연구)

  • Lee Jin-Wook;Min Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.553-559
    • /
    • 2006
  • Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(volume of fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response In a piezo-driven injector were reflected to spray development in agreement with the experimental spray images.

Investigation for Optimization of Ultrasonic Soil-Washing Process for Remediation of Diesel Contaminated Soil (유류오염토양의 복원을 위한 초음파 토양세척 공정의 최적화에 대한 연구)

  • Park, Beom-Guk;Son, Young-Gyu;Hwang, An-Na;Khim, Jee-Hyeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.101-105
    • /
    • 2011
  • Determination of ultrasonic frequency and experimental design approach to optimization of ultrasonic soil-washing process for remediation of diesel contaminated soil were investigated. Ultrasonic frequencies of 35, 72, and 100 kHz were used for determination of optimal frequency. $MINITAB^{(R)}$ program was used for experimental design of optimal washing condition. The optimal ultrasonic frequency was 35 kHz. Even though the number of cavitation bubble is little, however cavitation bubbles involving larger energy compared with high frequency was generated. Therefore, the removal efficiency at low frequency was higher than at high frequency. However the input energy has to be considered when the process is applied. The statistical tests from a factorial experiment shows that the application of ultrasound and mechanical mixing are the most important factor for design of an ultrasonic soil washing process. The lab-scale experiments are required to get the optimal condition of ultrasound and mechanical mixing for application of ultrasonic soil washing process.

Numerical Examinations of Damage Process on the Chuteway Slabs of Spillway under Various Flow Conditions (여수로 방류에 따른 여수로 바닥슬래브의 손상 발생원인 수치모의 검토)

  • Yoo, Hyung Ju;Shin, Dong-Hoon;Kim, Dong Hyun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.47-60
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate variability increased, the damage of aging chuteway slabs of spillway are on the rise. Accordingly, a wide array of field survey, hydraulic experiment and numerical simulation have been conducted to find the cause of damage on chuteway slabs. However, these studies generally reviewed the flow characteristics and distribution of pressure on chuteway slabs. Therefore the derivation of damage on chuteway slabs was relatively insufficient in the literature. In this study, the cavitation erosion and hydraulic jacking were assumed to be the causes of damage on chuteway slabs, and the phenomena were reproduced using 3D numerical models, FLOW-3D and COMSOL Multiphysics. In addition, the cavitation index was calculated and the von Mises stress by uplift pressure distribution was compared with tensile and bending strength of concrete to evaluate the possibility of cavitation erosion and hydraulic jacking. As a result of numerical simulation on cavitation erosion and hydraulic jacking under various flow conditions with complete opening gate, the cavitation index in the downstream of spillway was less than 0.3, and the von Mises stress on concrete was 4.6 to 5.0 MPa. When von Mises stress was compared with tensile and bending strength of concrete, the fatigue failure caused by continuous pressure fluctuation occurred on chuteway slabs. Therefore, the cavitation erosion and hydraulic jacking caused by high speed flow were one of the main causes of damage to the chuteway slabs in spillway. However, this study has limitations in that the various shape conditions of damage(cavity and crack) and flow conditions were not considered and Fluid-Structure Interaction (FSI) was not simulated. If these limitations are supplemented and reviewed, it is expected to derive more efficient utilization of the maintenance plan on spillway in the future.

A Study of Thermal Effects for a Half-Circumferential Grooved Journal Bearing (半圓周形 윤활홈을 갖는 저어널 베어링의 熱效果에 관한 연구)

  • Chun, Sang-Myung;Lalas, Demetrius P.
    • Tribology and Lubricants
    • /
    • v.6 no.1
    • /
    • pp.36-51
    • /
    • 1990
  • A parametric study of the thermal effects of a half-circumferential grooved journal bearings under aligned and misaligned conditions has been carried out by solving numerically the coupled Reynolds and energy equation system. Five different sets of boundary conditions for the energy equation have been used which include mixing between recirculating oil and inlet oil and a contraction ratio for the cavitation region. The effects of changes of the inlet oil temperature and pressure, the wall temperature and the L/D ratio have also been examined. For the range of parameters found in internal combustion engines, the mixing effectiveness at the groove and the resulting final mixture temperature have been found to be as important as the wall temperature and the heat transfer rate. The variability of the temperature, though, has been shown to smooth out the peaks of both pressure and friction during misaligned condition Distributions of friction and pressure in the oil are also examined which may be useful in attempts to reduce friction without reducing load. Results for an axial grooved bearing are also presentsed for comparision purpose.

Construction of small hydropower facilities performance evaluation system (소수력 발전설비 성능평가 시스템 구축)

  • Kim, Youngjoon;Kim, Yongyeol;Cho, Yong;Ko, Jaemyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.193.2-193.2
    • /
    • 2010
  • Domestic hydroelectric power plants has been manufactured as the design condition by the demand. Hydraulic turbine power plants operating at appointed load shall be operate stable in terms of pressure, discharge, rotational speed and torque. A performance guarantees for hydro turbines shall be contain, as a minimum, guarantees covering power, discharge and specific hydraulic energy, efficiency, maximum momentary overspeed and maximum momentary pressure and maximum steady-state runaway speed, as well as guarantees related to cavitation. But, present in Korea, the absence of testing laboratories and technical criteria for the performance test of small hydropower degrades the efficiency of the domestic hydropower machines, and makes it difficult to objectively evaluate the performance of hydro turbine. Therefore We planned making a basis of performance test of small hydropower turbine by using our flowmeter calibration system the largest one in Korea. We planned the maximum measurable power of hydro turbine will be 200 kW in our system.

  • PDF