• Title/Summary/Keyword: Cavitation Surge

Search Result 30, Processing Time 0.029 seconds

Backflow Vortex Cavitation and Its Effects on Cavitation Instabilities

  • Yamamoto, Kazuyoshi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.40-54
    • /
    • 2009
  • Cavitation instabilities in turbo-machinery such as cavitation surge and rotating cavitation are usually explained by the quasi-steady characteristics of cavitation, mass flow gain factor and cavitation compliance. However, there are certain cases when it is required to take account of unsteady characteristics. As an example of such cases, cavitation surge in industrial centrifugal pump caused by backflow vortex cavitation is presented and the importance of the phase delay of backflow vortex cavitation is clarified. First, fundamental characteristics of backflow vortex structure is shown followed by detailed discussions on the energy transfer under cavitation surge in the centrifugal pump. Then, the dynamics of backflow is discussed to explain a large phase lag observed in the experiments with the centrifugal pump.

Study of Cavitation Instabilities in Double-Suction Centrifugal Pump

  • Hatano, Shinya;Kang, Donghyuk;Kagawa, Shusaku;Nohmi, Motohiko;Yokota, Kazuhiko
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.3
    • /
    • pp.94-100
    • /
    • 2014
  • In double-suction centrifugal pumps, it was found that cavitation instabilities occur with vibration and a periodic chugging noise. The present study attempts to identify cavitation instabilities in the double-suction centrifugal pump by the experiment and Computational Fluid Dynamics (CFD). Cavitation instabilities in the tested pump were classified into three types of instabilities. The first one, in a range of cavitation number higher than breakdown cavitation number, is cavitation surge with a violent pressure oscillation. The second one, in a range of cavitation number higher than the cavitation number of cavitation surge, is considered to be rotating cavitation and causes the pressure oscillation due to the interaction of rotating cavitation with the impeller. Last one, in a range of cavitation number higher than the cavitation number of rotating cavitation, is considered to be a surge type instability.

Rotating Choke and Choked Surge in an Axial Pump Impeller

  • Watanabe, Toshifumi;Sato, Hideyoshi;Henmi, Yasuhiko;Horiguchi, Hironori;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.232-238
    • /
    • 2009
  • Unlike usual turbopump inducers, the axial flow pump tested operates very stably at design flow rate without rotating cavitation nor cavitation surge. Flow visualization suggests that this is because the tip cavity smoothly extends into the flow passage without the interaction with the leading edge of the next blade. However, at low flow rate and low cavitation number, choked surge and rotating choke were observed. Their correlation with the performance curve under cavitation is discussed and their instantaneous flow fields are shown.

Cavitation Surge Suppression of Pump Inducer with Axi-asymmetrical Inlet Plate

  • Kim, Jun-Ho;Ishzaka, Koichi;Watanabe, Satoshi;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.50-57
    • /
    • 2010
  • The attachment of inducer in front of main impeller is a powerful method to improve cavitation performance. Cavitation surge oscillation, however, often occurs at partial flow rate and extremely low suction pressure. As the cavitation surge oscillation with low frequency of about 10 Hz occurs in a close relation between the inlet backflow cavitation and the growth of blade cavity into the throat section of blade passage, one method of installing an axi-asymmetrical plate upstream of inducer has been proposed to suppress the oscillation. The inlet flow distortion due to the axi-asymmetrical plate makes different elongations of cavities on all blades, which prevent the flow from becoming simultaneously unstable at all throat sections. In the present study, changes of the suppression effects with the axial distance between the inducer inlet and the plate and the changes with the blockage ratios of plate area to the cross-sectional area of inducer inlet are investigated for helical inducers with tip blade angles of $8^{\circ}$ and $14^{\circ}$. Then a conceivable application will be proposed to suppress the cavitation surge oscillation by installing axi-asymmetrical inlet plate.

Cavitation Surge in a Small Model Test Facility simulating a Hydraulic Power Plant

  • Yonezawa, Koichi;Konishi, Daisuke;Miyagawa, Kazuyoshi;Avellan, Francois;Doerfler, Peter;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.4
    • /
    • pp.152-160
    • /
    • 2012
  • Model tests and CFD were carried out to find out the cause of cavitation surge in hydraulic power plants. In experiments the cavitation surge was observed at flow rate, both with and without a surge tank placed just upstream of the inlet volute. The surge frequency at smaller flow rate was much smaller than the swirl mode frequency caused by the whirl of vortex rope. An unsteady CFD was carried out with two boundary conditions: (1) the flow rate is fixed to be constant at the volute inlet, (2) the total pressure is kept constant at the volute inlet, corresponding to the experiments without/with the surge tank. The surge was observed with both boundary conditions at both higher and lower flow rates. Discussions as to the cause of the surge are made based on additional tests with an orifice at the diffuser exit, and with the diffuser replaced with a straight pipe.

Study on Flow Instability and Countermeasure in a Draft tube with Swirling flow

  • Nakashima, Takahiro;Matsuzaka, Ryo;Miyagawa, Kazuyoshi;Yonezawa, Koichi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.230-239
    • /
    • 2015
  • The swirling flow in the draft tube of a Francis turbine can cause the flow instability and the cavitation surge and has a larger influence on hydraulic power operating system. In this paper, the cavitating flow with swirling flow in the diffuser was studied by the draft tube component experiment, the model Francis turbine experiment and the numerical simulation. In the component experiment, several types of fluctuations were observed, including the cavitation surge and the vortex rope behaviour by the swirling flow. While the cavitation surge and the vortex rope behaviour were suppressed by the aeration into the diffuser, the loss coefficient in the diffuser increased by the aeration. In the model turbine test the aeration decreased the efficiency of the model turbine by several percent. In the numerical simulation, the cavitating flow was studied using Scale-Adaptive Simulation (SAS) with particular emphasis on understanding the unsteady characteristics of the vortex rope structure. The generation and evolution of the vortex rope structures have been investigated throughout the diffuser using the iso-surface of vapor volume fraction. The pressure fluctuation in the diffuser by numerical simulation confirmed the cavitation surge observed in the experiment. Finally, this pressure fluctuation of the cavitation surge was examined and interpreted by CFD.

Experimental Study on the Performance of a Turbopump Inducer

  • Hong, Soon-Sam;Kim, Jin-Sun;Park, Chang-Ho;Kim, Jinhan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.240-244
    • /
    • 2004
  • Characteristics of steady and unsteady cavitation in a turbopump inducer were investigated in this paper. To see the effect of tip clearance on the inducer performance, three cases of tip clearance were tested. The helical inducer, which has two blades with inlet tip blade angle of 7.8 degree and tip solidity of 2.7, was tested in the water. In the non-cavitating condition, the inducer head decreased with increase in the tip clearance. Rotating cavitation and cavitation surge were observed through unsteady pressure measurements at the inducer inlet. The cell number and propagation speed of the rotating cavitation were determined through cross-correlation analysis. During the rotating cavitation one cell rotated at the same rotational speed as that of the inducer rotation and the cavitation surge did not rotate. The critical cavitation number increased with increase in the tip clearance at the same flow rate, but the change of critical cavitation number was small at the nominal flow rate.

  • PDF

Choked Surge in a Cavitating Turbopump Inducer

  • Watanabe, Toshifumi;Kang, Dong-Hyuk;Cervone, Angelo;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.64-75
    • /
    • 2008
  • During an experimental investigation on a 3-bladed and a 4-bladed axial inducer, a severe surge instability was observed in a range of cavitation number where the blade passage is choked and the inducer head is decreased from noncavitating value. The surge was stronger for the 4-bladed inducer as compared with a 3-bladed inducer with the same inlet and outlet blade angles. For the 4-bladed inducer, the head decreases suddenly as the cavitation number is decreased. The surge was observed after the sudden drop of head. This head drop was found to be associated with a rapid extension of tip cavity into the blade passage. The cause of surge is attributed to the decrease of the negative slope of the head-flow rate performance curve due to choke. Assuming that the difference between the 3 and 4-bladed inducers is caused by the difference of the blockage effects of the blade, a test was carried out by thickening the blades of the 3-bladed inducer. However, opposite to the expectations, the head drop became smoother and the instability disappeared on the thickened blade inducer. Examination of the pressure distribution on both inducers could not explain the difference. It was pointed out that two-dimensional cavitating flow analyses predict smaller breakdown cavitation number at higher flow rates, if the incidence angle is smaller than half of the blade angle. This causes the positive slope of the performance curve and suggests that the choked surge as observed in the present study might occur in more general cases.

Experimental Study on the Unsteady Cavitation of Turbopump Inducer (터보펌프 인듀서의 비정상 캐비테이션에 관한 실험적 연구)

  • Hong, Soon-Sam;Kim, Jin-Sun;Choi, Chang-Ho;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.1 s.28
    • /
    • pp.23-29
    • /
    • 2005
  • Steady and unsteady cavitation characteristics of turbopump inducer were investigated in this paper. To investigate the effect of blade angle on the inducer performance, three inducers with inlet tip blade angle of $7.8^{\circ},\;7.0^{\circ},\;6.1^{\circ}$, respectively, were tested. For $7.8^{\circ},\;7.0^{\circ}$ inducers in the non-cavitating condition, head decreased linearly with flow rate, but head-flow rate curve had a dip at the flow coefficient ${\psi}=0.065$ for $6.1^{\circ}$ inducer. Attached cavitation and cavitation surge were found in the $7.8^{\circ},\;7.0^{\circ}$ inducers in the cavitation tests. During the attached cavitation one cell rotated at the same rotational speed as that of the inducer. The cavitation surge did not rotate and the oscillating frequency was $7{\sim}20\;Hz$. From the curve of the critical cavitation number versus flow rate, it was found that the steady cavitation performance of $6.1^{\circ}$ inducer was much lower than that of $7.8^{\circ},\;7.0^{\circ}$ inducers.

Experimental Study on Cavitation Instability of a Solution Pump Inducer in an Absorption Chiller-Heater (흡수식 냉온수기내 용액펌프 Inducer의 Cavitation 불안정성에 대한 실험적 연구)

  • Seo, Min;Lee, Kyung-Hoon;Kang, Shin-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2434-2439
    • /
    • 2008
  • This paper was studied on the cavitation instability of a Solution Pump Inducer in an absorption chiller-heater. Inlet pressure of LiBr and rotational speed at nominal mode are 2,800 Pa and 3,500 rpm respectively. Due to the marginal operation of available NPSH, the cavitation performance of the inducer is critical for the stable operation without the deterioration of head performance. In the study, cavitation performance and its mode of instability was investigated experimentally. Water was used as the working fluid and the test inducer was scaled up as 1.75 times for detail measurements and flow visualization. Inlet pressure was controlled by a vacuum pump. This research focused on types of cavitation instability and phenomena to investigate the possibility of harmful damage due to cavitation instability. Casing wall pressure and instantaneous inlet pressure was measured to observe the unsteady flow characteristics. Through the visualization and spectrum analysis of pressure, the occurrence region and intensity of asymmetric cavitation and cavitation surge are analyzed in the test inducer.

  • PDF