• Title/Summary/Keyword: Cavitation Phenomena

Search Result 63, Processing Time 0.022 seconds

Visualization of ventilated supercavitation phenomena around a moving underwater body (수중 운동체 주변에 형성되는 환기 초공동(ventilated supercavitation) 현상 가시화)

  • Chung, Jaeho;Cho, Yeunwoo
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.26-29
    • /
    • 2015
  • A laboratory experiment was carried out to observe and visualize ventilated supercavitation phenomena around a moving underwater body which is attached to a newly designed high-speed (Max. 20 m/s) carriage system in a wave tank. Compared to the existing many other experimental studies using cavitation tunnels, where the body is at rest and the fluid is in motion in a bounded or closed environment, the present experimental study deals with super-cavity formation in unbounded or free-surface bounded environments, where the body is in motion and the fluid is at rest. Main attention is paid to the effective visualization of the steady-state cavity formations around a moving body and, those cavity formations are reported pictorially according to the body speed, ventilated air-pressure, and with or without a cavitator.

An Experimental Study on the Internal Flow Characteristics of a Jet Pump for the Smart UAV Fuel System (스마트무인기 연료계통 제트펌프의 내부 유동 특성에 관한 실험적 연구)

  • Lee, Yoon-Kwon;Lee, Chang-Ho;Choi, Hee-Joo;Lee, Jee-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.107-116
    • /
    • 2008
  • The jet pumps are widely used to transfer the fuel between the tanks in an aircraft fuel supply system. However detailed design procedures for determining the size of components of the jet pumps are not known so well. In this paper, the flow characteristics of the jet pump, which is applied in the fuel transfer system for the smart UAV (Unmanned Aerial Vehicle), were experimentally investigated using the acrylic jet pump model for the visualization of the internal flow. The pressure distributions within the jet pump were measured, and then the loss coefficients of each part were calculated. The effects of Reynolds number and the distances (S) between the exit of the primary nozzle and the mixing chamber entrance were investigated. In addition, cavitation phenomena were considered through the flow visualization inside the jet pump. As a conclusion from the experiment, the contraction shape of the primary nozzle has a strong effect on the loss coefficient of the nozzle and the cavitation occurrence. Cavitation starts around the nozzle exit, and then it propagates to the full flow fields of the jet pump.

Internal Flow Characteristics in the Draft Tube of a Francis Turbine

  • Wei, Qingsheng;Zhu, Baoshan;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.618-626
    • /
    • 2012
  • Suppression of abnormal flow phenomena in the Francis hydro turbine is very important to improve the turbine performance. Especially, as cavitation and cavitation surge makes serious problems when the turbine is operated in the range of partial flow rate, optimum method of suppressing the abnormal flow characteristics is required necessarily. Moreover, as swirl flow in the draft tube of the Francis turbine decreases pressure at the inlet of the draft tube, suppression of the swirl flow can be an useful method of suppressing the occurrence of cavitation. In order to clarifying the possibility of suppressing the swirl flow by J-Groove in the draft tube, a series of CFD analysis has been conducted in the range of partial load, designed condition and excessive flow rate of a Francis turbine. A kind of J-Groove is designed and applied to the draft tube of the Francis hydro turbine model. The pressure contours, circumferential velocity vectors and vortex core regions in the draft tube are compared by the conditions with or without J-Groove. In addition, a group of data about the velocity in the draft is presented to show the influence of J-Groove.

Numerical Analysis of Unsteady Cavitating Flow around Balancing Drum of Multistage Pump

  • Sedlar, Milan;Kratky, Tomas;Zima, Patrik
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.119-128
    • /
    • 2016
  • This work presents the numerical investigation of an unsteady cavitating flow around a balancing drum of a multistage pump. The main attention is focused on the cavitation phenomena, which occur in the rear part of the drum clearance, cause the erosion of the drum material and influence the pressure losses and the flow rate through the clearance. The one-way coupling of the URANS equations and the full Rayleigh-Plesset equation is employed to analyse the flow field as well as the dynamics of cavitating bubbles. The numerical simulations show that the erosion processes are highly influenced by shaft vibrations, namely by periodic deformations of the annular clearance in time. The calculated results are verified by erosion tests on a real pump.

Shock response analysis to underwater explosion using Hydrocode (Hydrocode를 이용한 수중폭발 충격응답 해석)

  • Lee, Sang-Gab;Park, Chung-Kyu;Kweon, Jung-Il;Jeong, Sung-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1174-1179
    • /
    • 2000
  • In recent years, the structural shock response to underwater explosion has been studied as much, or more, through numerical simulations than through testing for several reasons. Very high costs and sensitive environmental concerns have kept destructive underwater explosion testing to a minimum. Increase of simulation capabilities and sophisticated simulation tools has made numerical simulations more efficient analysis methods as well as more reliable testing aids. For the simulation of underwater explosions against, surface ships or submerged structures one has to include the effects of the explosive shock wave, the motion of the gaseous reactive products, the local cavitation collapse, the different nonlinear structural properties and the complex fluid-structure interaction phenomena. In this study, as benchmark step for the validation of hydrocode LS/DYNA3D and of technology of fluid-structure interaction problems, two kinds of cavitation problems are analyzed and structural shock response of floating ship model are compared with experimental result.

  • PDF

Uncoupled Solution Approach for treating Fluid-Structure Interaction due to the Near-field Underwater Explosion (근거리 수중폭발에 따른 유체-구조 상호작용 취급을 위한 비연성 해석방법)

  • Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.125-132
    • /
    • 2019
  • Because the water exposed to shock waves caused by an underwater explosion cannot withstand the appreciable tension induced by the change in both pressure and velocity, the surrounding water is cavitated. This cavitating water changes the transferring circumstance of the shock loading. Three phenomena contribute to hull-plate damage; initial shock loading and its interaction with the hull plate, local cavitation, and local cavitation closure then shock reloading. Because the main concern of this paper is local cavitation due to a near-field underwater explosion, the water surface and the waves reflected from the sea bottom were not considered. A set of governing equations for the structure and the fluid were derived. A simple one-dimensional infinite plate problem was considered to verify this uncoupled solution approach compared with the analytic solution, which is well known in this area of interest. The uncoupled solution approach herein would be useful for obtaining a relatively high level of accuracy despite its simplicity and high computational efficiency compared to the conventional coupled method. This paper will help improve the understanding of fluid-structure interaction phenomena and provide a schematic explanation of the practical problem.

Study on the Corrosion Damages of Pump Impeller (펌프 임펠러의 부식 파손에 대한 연구)

  • Kim, J.W.;Lim, H.C.;Kwon, O.B.;Bae, D.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • The steel impeller placed in a water pump has been studied with the aim to understand corrosion phenomena on the surface responsible for reducing the pumping efficiency of water inside cooling system. This preliminary experiment includes a period (over 5 months) observation with a powered microscope and weight measurements. The experiments are carried out at different conditions of water and mixtures of water and coolants, based on the water contents of 25%, 50%, 75%, and 100% water (pure tap water). From the visual results of microscopy, most of the steel surface is fitted and clear rusty or corrosion phenomena are noticeable as time goes. In addition, the weight loss of the sample specimen submerged in the water is linearly increased, whereas those in the mixtures of water initially be constant and then gain weight linearly.

  • PDF

An Experimental Study of Accelerating Phase Change Heat Transfer

  • Oh, Yool-Kwon;Park, Seul-Hyun;Cha, Kyung-Ok
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1882-1891
    • /
    • 2001
  • The present paper investigated the effect of ultrasonic vibrations on the melting process of a phase-change material (PCM). Furthermore, the present study considered constant heat flux boundary conditions unlike many of the previous researches adopted constant wall temperature conditions. Therefore, in the present study, modified dimensionless parameters such as Ste* and Ra* were used. Also, general relationships between melting with ultrasonic vibrations and melting without ultrasonic vibrations were established during the melting of PCM. Experimental observations show that the effect of ultrasonic vibrations on heat transfer is very important throughout the melting process. The results of the present study reveal that ultrasonic vibrations accompany the effects like agitation, acoustic streaming, cavitation, and oscillating fluid motion. Such effects are a prime mechanism in the overall melting process when ultrasonic vibrations are applied. They enhance the melting process as much as 2.5 tildes, compared with the result of natural melting. Also, energy can be saved by applying ultrasonic vibrations to the natural melting. In addition, various time-wise dimensionless numbers provide conclusive evidence of the important role of ultrasonic vibrations on the melting phenomena.

  • PDF

Three Dimensional Simulation Model of Fuel Delivery Jet Pump (연료 송출용 제트펌프 3차원 전산해석 모델)

  • PARK, DAIN;YUN, JIN WON;YU, SANGSEOK
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.3
    • /
    • pp.308-314
    • /
    • 2017
  • Jet pump in automotive fuel tank module is used to deliver fuel to fuel pump so that the pump is operated without aeration in suction side. In this study, three dimensional simulation model of jet pump is developed to understand performance variation over design parameters. Performance of jet pump is also investigated experimentally in terms of operating pressures. The experimental data is used to verify the three dimensional simulation model of jet pump. Verification results show that the three dimensional simulation model of jet pump is about 1% error with experiment. The simulations are conducted in terms of throat ratio and primary flow induction angle. As the throat ratio is increased, the flux ratio is trade-off at 3 times of throat diameter. On the other hand, as primary flow induction angle is increased, vapor pressure inside the nozzle is decreased. In summary, the results show that liquid jet pump has to be optimized over design parameters. Additionally, high velocity of induced flow is able to evolve cavitation phenomena inside the jet pump.