• Title/Summary/Keyword: Cavitation Effect

Search Result 317, Processing Time 0.033 seconds

Design Sensitivity Estimation of Injector Nozzle Hole Considering Cavitation (캐비테이션에 관한 인젝터 노즐 홀의 설계민감도 평가)

  • Yeom, Jeong Kuk;Ha, Hyeong Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1361-1369
    • /
    • 2013
  • This study performs a computational fluid dynamics (CFD) analysis of the inner flow of a multihole injector nozzle by using ANSYS CFX 13.0. Based on the obtained results, a design of experiment (DOE) was performed and applied to investigate the effects of injector nozzle design parameters on cavitation. To analyze the design sensitivity and signal-to-noise ratio (S/N ratio), the hole diameter, hole length, hole angle, and K-factor of the nozzle hole were selected as design parameters, and the effect of these parameters was investigated at 16 experimental points. Consequently, it was found that the effect of the K-factor on the cavitation and inner flow of the injector nozzle is the greatest. Thus, the selection of a suitable K-factor is important in nozzle design considering cavitation flow.

Effects of Cavitation and Drop Characteristics on Oleo-Pneumatic Type Landing Gear Systems (공동현상을 고려한 유공압 방식 착륙장치의 낙하특성에 관한 연구)

  • Han, Jae-Do;Lee, Young-Sin;Kang, Yeon-Sik;Ahn, Oh-Sung;Kong, Jeong-Pyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.193-200
    • /
    • 2009
  • This paper investigated the drop characteristics of oleo pneumatic type landing gear for small aircraft and the effects of cavitations in modeling the landing gear system. The landing gear system employed a simple oleo pneumatic type damper without a metering pin. In general, oleo-pneumatic type landing gears are light-weighted because of it's simplicity, yet they offer excellent impact absorption characteristics. In this study, the landing gear system was modeled using MSC ADAMS, which offers a drop simulation module. After modeling the system, a series of testing was conducted, using a prototype landing gear system, to validate the analysis model and simulation results. The effect of cavitation was considered in the simulation model to obtain a better correlation between the test and simulation results. The results show that adding the cavitation effect in the simulation model significantly improved the simulation model and better captured the dynamic behaviors of the landing system. Using the 'cavitation' model, dynamics characteristics of the landing gear were further evaluated for other landing conditions, such as landing in various angles of slopes.

Hydraulic Performance Test of a Turbopump (터보펌프의 수력 성능시험)

  • Hong Soon-Sam;Kim Dae-Jin;Kim Jin-Sun;Choi Chang-Ho;Kim Jinhan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.243-247
    • /
    • 2005
  • Hydraulic performance test was conducted for a fuel pump of a liquid rocket engine turbopump. The pump driven by an electric motor was tested in water environment. It is experimentally shown that the inducer had very small effect on the pimp's head and efficiency but great effect on the pump's cavitation performance. Additionally, inducer test was carried out to investigate the effect of the inducer on the pump in detail, and it was found that the pump had a critical cavitation number when the inducer head dropped by $55\%$.

  • PDF

Hydrodynamic Performance Test of a Turbopump (터보펌프의 수력 성능시험)

  • Hong Soon-Sam;Kim Dae-Jin;Kim Jin-Sun;Choi Chang-Ho;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.18-22
    • /
    • 2006
  • Hydrodynamic performance test was conducted for a fuel pump of a liquid rocket engine turbopump. The pump driven by an electric motor was tested using water. It is experimentally shown that the inducer had very small effect on the pump's head and efficiency but great effect on the pump's cavitation performance. Additionally, inducer test was carried out to investigate the effect of the inducer on the pump in detail, and it was found that the pump reached a critical cavitation number when the inducer head dropped by 55%.

Sonochemical Effects using Multi-stepped Ultrasonic Horn (다단 혼 형태의 초음파 장비를 이용한 초음파 화학적 효과 연구)

  • Choi, Jongbok;Lee, Seongeun;Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.58-66
    • /
    • 2020
  • Since the typical horn-type ultrasonic equipment induces a reaction at the probe tip, the sonochemical reaction has a limitation that it occurs only in a specific area. As one of the ways to overcome this limitation, an ultrasonic device with multi-stepped horn equipped with several oscillators has been developed. The objective of this study was to investigate the sonochemical effects induced by acoustic cavitation system in 20 kHz multi-stepped ultrasonic horn using calorimetry, KI dosimetry and the luminol test. The sonochemical effects of multi-stepped ultrasonic horn were compared with that of the typical horn-type 20 kHz ultrasonic device. The effect of immersion depth and power on the sonochemical reaction was investigated in the ultrasonic system with multi-stepped ultrasonic horn. Higher calorimetric energy was obtained at higher immersion depth and power conditions. Sonochemical effects increased significantly when using the high immersion depth and input power. However, as the input power increased, the cavitation reaction zone concentrated around the ultrasonic horn. Additionally, the experiments to examine the effect of liquid temperature was conducted. The smaller sonochemical reaction was obtained for the higher liquid temperature. The effect on temperature seems to be closely related to liquid conditions such as viscosity and vapor pressure of water.

Comparative Study on Viscous and Inviscid Analysis of Partial Cavitating Flow for Low Noise Propeller Design (저소음 프로펠러 설계를 위한 부분공동 유동의 점성 및 비점성 수치해석 비교 연구)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon;Park, Cheol-Soo;Kim, Gun-Do
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.358-365
    • /
    • 2014
  • When a ship propeller having wing type sections rotates at high speed underwater, local pressure on the blade decreases and various types of the cavitation inevitably occur where the local pressure falls below the vapor pressure. Fundamentally characteristics of the cavitation are determined by the shapes of the blade section and their operating conditions. Underwater noise radiated from a ship propeller is directly connected to the occurrence of the cavitation. In order to design low noise propeller, it is preferentially demanded to figure out key features: how the cavity is generated, developed and collapsed and how the effect of viscosity works in the process. In this study, we first perform inviscid analysis of the partial cavity generated on two dimensional hydrofoil. Secondly, viscous analysis using FLUENT with different turbulence and cavitation models are presented. Results from both approaches are also compared and estimated.

A Numerical Study on the Influence of the Horizontal Gap upon the Cavitation Behavior of a Horn Type Rudder (혼-타의 수평틈새가 캐비테이션에 미치는 영향에 관한 수치적 연구)

  • Seo, Dae-Won;Lee, Seung-Hee;Kim, Hyo-Chul;Oh, Jung-Keun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.113-121
    • /
    • 2010
  • Recently, as container ships become larger and faster, rudder cavitations are more frequently observed near the gap between the horn and rudder plates of the ships to cause serious damages to the rudder surface of the ship. The authors already have suggested through a series of model experiments and numerical computations that employment of an appropriate blocking device for gap flow may retard the gap cavitation. For examples, a cam device installed near the outer edges of the vertical gap or a water-injection device combined with a pair of half-round bars installed inside the gap can considerably reduce the gap cavitation. However, it is also found that effective blocking of the flow through the vertical gap results in growth of the cavitation near the horizontal gap instead. In the present study, effectiveness of the simultaneous blocking of the flow through the horizontal and vertical gaps of a horn type rudder in minimizing the damage by gap cavitation is studied. Additional blocking disks are inserted inside the horizontal gaps on the top and bottom of the pintle block and numerical computations are carried out to confirm the combined effect of the blocking devices.

The Effect of Irradiation Distance/Volume on Sonochemical Oxidation of Arsenite (초음파를 이용한 As(III) 산화 시 조사 거리/부피의 영향)

  • Kim, Eunkyung;Son, Younggyu;Cui, Mingcan;Khim, Jeehyeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.247-253
    • /
    • 2012
  • The objective of this study was to find the frequency that most effectively generates hydroxyl radical and to investigate the effect of solution volume on the oxidation of arsenite (As[III]) under the determined frequency. Based on the cavitation yield for hydrogen peroxide, hydroxyl radical is formed most effectively under the frequency of 300 kHz. The experiment was performed with various solution volumes (334, 690, 1,046, and 1,401 mL) under 300 kHz. Results showed that as solution volume increased, kinetic constant for arsenite oxidation decreased. However, cavitation yield for arsenite decreased in small volumes (334, and 690 mL) but maintained or increased in large volumes (1,046, and 1,401 mL) over a set period of time (10, 30, and 60 min). Based on the kinetic constant result, it is more advantageous to oxidize arsenite in small volumes. However, according to the cavitation yield for arsenite, it is applicable to oxidize arsenite in large volumes over a long period of time.

Numerical Study on the Hydrodynamic Performance Prediction of Turbopump Inducers (터보펌프 인듀서의 수치해석을 통한 성능예측)

  • Choi, Chang-Ho;Lee, Gee-Soo;Kim, Jin-Han;Yang, Soo-Seok
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.625-630
    • /
    • 2001
  • The inducers in liquid-rocket engines are to increase the inlet pressure of the pump to avoid any malfunction due to cavitation. Inducers are typically designed to be operated with some amount of cavitation for the compactness of the turbopump system. Also, inducers are designed to produce low headrise to prevent the decrease of the overall pump efficiency due to the low efficiency of inducers. In the present paper, a computational study on the hydrodynamic behavior of the inducer for the rocket-engine turbopump are presented including the effect of the mass flow rate under the constant rotational speed. As the mass flow rate is decreased, the inducer showed better performance with strong back flows which may have deleterious effects upon the anti-cavitation ability. But the adopted inducer showed very low headrise with high volume flow rates, which may be caused by the small passage area near the trailing edge. The modified version of the present inducer is proposed and numerically evaluated, which in turn showed better results.

  • PDF