• 제목/요약/키워드: Cavitating flow analysis

검색결과 52건 처리시간 0.025초

Discharge Performance of Impinging Injector for Cavitating Flow

  • Cho, Won Kook;Ryu, Chul-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2004
  • The discharge performance of an impinging-type injector for cavitating flow has been evaluated. The predicted discharge coefficient for cavitating flow agree s well with the measured data showing less than 2% discrepancy. For the case of non- cavitating flow analysis, the disagreement between CFD resu lts and the experimental data is 8%. The discharge coefficient for the cavitating flow decreases with decrea se in the Reynolds number. On the other hand, it increases slightly as the Reynolds number increases for the non-cavitating flow because of the reduced viscous effect. The incipience of cavitation is predicted to occur around the cavitation number of 1.3 for fixed Reynolds number flow. In this environment, the discharge performance is proportional to the cavitation number for cavitating flow while it is independent to the cavitation number for non-cavitating flow regime.

Application of Preconditioning Method to Cavitating Flow Computation

  • Shin, Byeong-Rog
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1903-1908
    • /
    • 2004
  • A preconditioned numerical method for gas-liquid two-phase flows is applied to solve cavitating flow. The present method employs a finite-difference dual time-stepping integration procedure and the MUSCLTVD scheme. A homogeneous equilibrium cavitation model is used. The present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation, large density changes and incompressible flow characteristics at low Mach number. Some internal flows such as convergent-divergent nozzles are computed using this method. Comparisons of predicted and experimental results are provided and discussed.

  • PDF

Unsteady Flow with Cavitation in Viscoelastic Pipes

  • Soares, Alexandre K.;Covas, Didia I.C.;Ramos, Helena M.;Reis, Luisa Fernanda R.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.269-277
    • /
    • 2009
  • The current paper focuses on the analysis of transient cavitating flow in pressurised polyethylene pipes, which are characterized by viscoelastic rheological behaviour. A hydraulic transient solver that describes fluid transients in plastic pipes has been developed. This solver incorporates the description of dynamic effects related to the energy dissipation (unsteady friction), the rheological mechanical behaviour of the viscoelastic pipe and the cavitating pipe flow. The Discrete Vapour Cavity Model (DVCM) and the Discrete Gas Cavity Model (DGCM) have been used to describe transient cavitating flow. Such models assume that discrete air cavities are formed in fixed sections of the pipeline and consider a constant wave speed in pipe reaches between these cavities. The cavity dimension (and pressure) is allowed to grow and collapse according to the mass conservation principle. An extensive experimental programme has been carried out in an experimental set-up composed of high-density polyethylene (HDPE) pipes, assembled at Instituto Superior T$\acute{e}$cnico of Lisbon, Portugal. The experimental facility is composed of a single pipeline with a total length of 203 m and inner diameter of 44 mm. The creep function of HDPE pipes was determined by using an inverse model based on transient pressure data collected during experimental runs without cavitating flow. Transient tests were carried out by the fast closure of the ball valves located at downstream end of the pipeline for the non-cavitating flow and at upstream for the cavitating flow. Once the rheological behaviour of HDPE pipes were known, computational simulations have been run in order to describe the hydraulic behaviour of the system for the cavitating pipe flow. The calibrated transient solver is capable of accurately describing the attenuation, dispersion and shape of observed transient pressures. The effects related to the viscoelasticity of HDPE pipes and to the occurrence of vapour pressures during the transient event are discussed.

충돌형 분사기 내의 캐비테이션 유동 (Cavitating Flow in an Impinging-type Injector)

  • 조원국;류철성;이대성
    • 한국항공우주학회지
    • /
    • 제31권5호
    • /
    • pp.80-86
    • /
    • 2003
  • 캐비테이션이 존재하는 충돌형 분사기의 유출 특성에 관하여 수치해석과 실험을 수행하였다. 캐비테이션을 고려한 유동 해석 결과 실험결과와 비교하여 1% 유출계수 차이가 관찰된 반면, 단상유동 해석 결과는 8%의 차이를 보였다. 캐비테이션 유동에서 유출계수는 레이놀즈 수가 증가함에 따라 감소하였다. 반면에 단상유동에서는 레이놀즈 수에 비례하여 약간 증가하였으며 이는 점성의 효과가 상대적으로 작아진 것으로 풀이된다. 이러한 결과는 캐비테이션이 발생하는 유동에서 분사기의 유출계수를 정확하게 예측하기 위해서는 캐비테이션을 고려해야 한다는 것을 말하는 것이다. 캐비테이션 발생에 의하여 분사기 출구에서 밀도와 유속분포의 불균일이 심해졌고 이차유동의 강도가 강화되었다.

측류유동을 고려한 실린더 주위의 캐비테이션 유동 현상 해석 (SIMULATION OF CAVITATING FLOW PAST CYLINDERS WITH STRONG SIDE FLOW)

  • 이병우;박원규;이건철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.149-154
    • /
    • 2009
  • The cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has focused on the simulation of cavitating flow past cylinders with strong side flow. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved liquid and vapor phase, separately. An implicit dual time and preconditioning method are employed for computational analysis. The results from the present solver have been in a fairly good agreement with the experimental data and other numerical results. After the code validation the strong side flow was applied to include the wake flow effect of the submarine.

  • PDF

측류유동을 고려한 실린더 주위의 캐비테이션 유동 현상 해석 (SIMULATION OF CAVITATING FLOW PAST CYLINDERS WITH STRONG SIDE-FLOW)

  • 이병우;박원규;이건철
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.78-85
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has focused on the simulation of cavitating flow past cylinders with strong side flows. The governing equation is the Navier-Stokes equation based on the homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved liquid and vapor phase, separately. An implicit dual time and preconditioning method are employed for computational analysis. For the code validation, the results from the present solver have been compared with experiments and other numerical results. A fairly good agreement with the experimental data and other numerical results have been obtained. After the code validation, the strong side flow was applied to include the wake flow effects of the submarine or ocean tide.

SVA Potsdam 프로펠러 단독 및 캐비테이션 성능 수치해석 (Numerical Analysis of Non-Cavitating and Cavitating Performance of a SVA Potsdam Propeller)

  • 김제인;박일룡;김기섭;안종우
    • 대한조선학회논문집
    • /
    • 제54권3호
    • /
    • pp.215-226
    • /
    • 2017
  • This paper presents numerical results of the performance of a marin propeller in cavitating and non-cavitating flow conditions. The geometry and experimental validation data of the propeller are provided in Potsdam Propeller Test Case(PPTC) in the framework of the second International Symposium on Marine Propulsors 2011(SMP'11) workshop. The PPTC includes open water tests, velocity field measurements and cavitation tests. The present numerical analysis was carried out by using the Reynolds averaged Navier-Stokes(RANS) method on a wall-resolved grid ensuring a y+=1, where the SST k-${\omega}$ model was mainly used for turbulence closure. The influence of the turbulence model was investigated in the prediction of the wake field under a non-cavitating flow condition. The propeller tip vortex flows in both cavitating and non-cavitating conditions were captured through adaptation of additional grids. For the cavitation flows at three operation points, Schnerr-Sauer's cavitation model was used with a Volume-Of Fluid(VOF) approach to capture the two-phase flows. The present numerical results for the propeller wake and cavitation predictions including the open water performance showed a qualitatively reasonable agreement with the model test results.

2차원 및 축대칭 운동체 주위의 초공동 현상에 대한 수치해석 (NUMERICAL ANALYSIS OF SUPER-CAVITATING FLOW AROUND TWO-DIMENSIONAL AND AXISYMMETRIC BODIES)

  • 박선호;이신형
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.14-21
    • /
    • 2011
  • Super-cavitating flows around under-water bodies are being studied for drag reduction and dramatic speed increase. In this paper, high speed super-cavitating flow around a two-dimensional symmetric wedge-shaped body were studied using an unsteady Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. To verify the computational method, flow over a hemispherical head-form body was simulated and validated against existing experimental data. Various computational conditions, such as different wedge angles and caviation numbers, were considered for the super-cavitating flow around the wedge-shaped body. Super-cavity begins to form in the low pressure region and propagates along the wedge body. The computed cavity lengths and velocities on the cavity boundary with varying cavitation number were validated by comparing with analytic solution.

준초월공동 프로펠러의 이론적 해석 (Theoretical analysis of trans-cavitating propeller)

  • 조충호;이창섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.173-176
    • /
    • 2002
  • The purpose of this study is to develop a tool for the analysis of the cavitating flow around trans-cavitating marine propellers. In this study, a linearized super-cavitation theory was applied in order to analyze the performance of the 2-dimensional foils. The numerical results correlated very well with experimental data. The trans-cavitating propellers, manufactured and tasted in KRISO, is selected to validate the lifting surface procedure. For a TCP with a Johnson's five term section, the comparison between the numerical prediction and experiments is fairly good and promising. The new lifting surface procedure, developed and validated with 2-D foils and a TCP, is generally considered applicable to the practical design of the trans-cavitating propeller with Johnson's five term section

  • PDF

측류유동을 고려한 실린더 주위의 캐비테이션 유동 현상 해석 (SIMULATION OF THE DESIGN METHODOLOGY FOR HIGH PERFORMANCE AND EFFICIENT CAVITATOR)

  • 이병우;박수일;박원규;이건철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.177-184
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has focused on the simulation of cavitating flow past cylinders with strong side flows. The governing equation is the Navier-Stokes equation based on the homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved liquid and vapor phase, separately. An implicit dual time and preconditioning method are employed for computational analysis. For the code validation, the results from the present solver have been compared with experiments and other numerical results. A fairly good agreement with the experimental data and other numerical results have been obtained. After the code validation, the strong side flow was applied to include the wake flow effects of the submarine or ocean tide.

  • PDF