• 제목/요약/키워드: Cauchy Mutation Operator

검색결과 2건 처리시간 0.013초

An Improved Cat Swarm Optimization Algorithm Based on Opposition-Based Learning and Cauchy Operator for Clustering

  • Kumar, Yugal;Sahoo, Gadadhar
    • Journal of Information Processing Systems
    • /
    • 제13권4호
    • /
    • pp.1000-1013
    • /
    • 2017
  • Clustering is a NP-hard problem that is used to find the relationship between patterns in a given set of patterns. It is an unsupervised technique that is applied to obtain the optimal cluster centers, especially in partitioned based clustering algorithms. On the other hand, cat swarm optimization (CSO) is a new meta-heuristic algorithm that has been applied to solve various optimization problems and it provides better results in comparison to other similar types of algorithms. However, this algorithm suffers from diversity and local optima problems. To overcome these problems, we are proposing an improved version of the CSO algorithm by using opposition-based learning and the Cauchy mutation operator. We applied the opposition-based learning method to enhance the diversity of the CSO algorithm and we used the Cauchy mutation operator to prevent the CSO algorithm from trapping in local optima. The performance of our proposed algorithm was tested with several artificial and real datasets and compared with existing methods like K-means, particle swarm optimization, and CSO. The experimental results show the applicability of our proposed method.

ACDE2: 수렴 속도가 향상된 적응적 코시 분포 차분 진화 알고리즘 (ACDE2: An Adaptive Cauchy Differential Evolution Algorithm with Improved Convergence Speed)

  • 최태종;안창욱
    • 정보과학회 논문지
    • /
    • 제41권12호
    • /
    • pp.1090-1098
    • /
    • 2014
  • 이 연구는 단봉 전역 최적화 성능이 개선된 적응적 코시 분포 차분 진화 알고리즘을 제안한다. 기존 적응적 코시 분포 차분 진화 알고리즘은(ACDE) 개체의 다양성을 보장하여 다봉 전역 최적화 문제에 우수한 "DE/rand/1" 돌연변이 전략을 사용했다. 그러나 이 돌연변이 전략은 수렴 속도가 느려 단봉 전역 최적화 문제에 단점이 있다. 제안 알고리즘은 "DE/rand/1" 돌연변이 전략 대신 수렴 속도가 빠른 "DE/current-to-best/1" 돌연변이 전략을 사용했다. 이때, 개체의 다양성이 부족하여 발생할 수 있는 지역 최적해로의 수렴을 방지하기 위해서 매개변수 초기화 연산이 추가됐다. 매개변수 초기화 연산은 특정세대를 주기로 실행되거나 또는 선택 연산에서 모든 개체가 진화에 실패하는 경우 실행된다. 매개변수 초기화 연산은 각 개체들의 매개변수에 탐험적 특성이 높은 값을 할당하여 넓은 공간을 탐색할 수 있도록 보장한다. 성능 평가 결과, 개선된 적응적 코시 분포 차분 진화 알고리즘이 최신 차분 진화 알고리즘들에 비해 특히, 단봉 전역 최적화 문제에서 성능이 개선됨을 확인했다.