• Title/Summary/Keyword: Cationic liposome

Search Result 52, Processing Time 0.017 seconds

Effect of Lipofectin on Antigen-presenting Function and Anti-tumor Activity of Dendritic Cells (수지상세포의 항원제시 능력 및 항암활성에 미치는 Lipofectin의 영향)

  • Noh, Young-Woock;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • v.6 no.2
    • /
    • pp.102-110
    • /
    • 2006
  • Background: Dendritic cells (DC) are professional antigen-presenting cells in the immune system and can induce T cell response against virus infections, microbial pathogens, and tumors. Therefore, immunization using DC loaded with tumor-associated antigens (TAAs) is a powerful method of inducing anti-tumor immunity. For induction of effective anti-tumor immunity, antigens should be efficiently introduced into DC and presented on MHC class I molecules at high levels to activate antigen-specific $CD8^+$ T cells. We have been exploring methods for loading exogenous antigens into APC with high efficiency of Ag presentation. In this study, we tested the effect of the cationic liposome (Lipofectin) for transferring and loading exogenous model antigen (OVA protein) into BM-DC. Methods: Bone marrow-derived DC (EM-DC) were incubated with OVA-Lipofectin complexes and then co-cultured with B3Z cells. B3Z activation, which is expressed as the amount of ${\beta}$-galactosidase induced by TCR stimulation, was determined by an enzymatic assay using ${\beta}$-gal assay system. C57BL/6 mice were immunized with OVA-pulsed DC to monitor the in vivo vaccination effect. After vaccination, mice were inoculated with EG7-OVA tumor cells. Results: BM-DC pulsed with OVA-Lipofectin complexes showed more efficient presentation of OVA-peptide on MHC class I molecules than soluble OVA-pulsed DC. OVA-Lipofectin complexes-pulsed DC pretreated with an inhibitor of MHC class I-mediated antigen presentation, brefeldin A, showed reduced ability in presenting OVA peptide on their surface MHC class I molecules. Finally, immunization of OVA-Lipofectin complexes-pulsed DC protected mice against subsequent tumor challenge. Conclusion: Our data provide evidence that antigen-loading into DC using Lipofectin can promote MHC class I- restricted antigen presentation. Therefore, antigen-loading into DC using Lipofectin can be one of several useful tools for achieving efficient induction of antigen-specific immunity in DC-based immunotherapy.

Efficient Transduction with Recombinant Adenovirus in EBV-transformed B Lymphoblastoid Cell Lines

  • Kim, Hye-Jin;Cho, Hyun-Il;Han, Yoon-Hee;Park, Soo-Young;Kim, Dong-Wook;Lee, Dong-Gun;Kim, Jee-Hoon;Shin, Wan-Shik;Paik, Soon-Young;Kim, Chun-Choo;Hong, Young-Seon;Kim, Tai-Gyu
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.376-382
    • /
    • 2004
  • The Epstein-Barr-transformed B lymphoblastoid cell lines, LCL, which express antigens, are potential antigen-presenting cells (APCs) for the induction of cytotoxic T lymphocytes in vitro. However, transfecting LCL with subsequent selection by antibiotics is notoriously difficult because the plating efficiencies of LCL are reported to be 1% or less. Therefore, this study investigated the optimal conditions for increasing the transduction efficiency of a recombinant adenovirus to LCL for use as a source of APCs. The transduction efficiencies were < 13% (SD $\pm$ 2.13) at a multiplicity of infection (MOI) of 100, while it was increased to 28% (SD $\pm$ 9.43) at an MOI of 1000. Moreover, its efficiencies to LCL that expressed the coxsackie adenovirus receptor were increased to 60% (SD $\pm$ 6.35) at an MOI of 1000, and were further increased to 70% (SD $\pm$ 4.56) when combined with the centrifugal method. The cationic liposome or anionic polymer had no effect on the transduction efficiency when compared to that of the centrifugal method. These results may be used as a convenient source of target cells for a CTL assay and/or autologous APCs for the induction of the in vitro CTL responses that are specific to viral and tumor antigens.