• 제목/요약/키워드: CathodeThermal

검색결과 210건 처리시간 0.022초

열전지용(MS2, M=Fe, Ni, Co)계 양극의 전기화학적 특성 연구 (Effect of Cathode Materials (MS2, M=Fe, Ni, Co) on Electrochemical Properties of Thermal Batteries)

  • 이정민;임채남;윤현기;정해원
    • 한국전기전자재료학회논문지
    • /
    • 제30권9호
    • /
    • pp.583-588
    • /
    • 2017
  • Thermal batteries are used in military power sources that require robustness and long storage life for applications in missiles and torpedoes. $FeS_2$ powder is currently used as a cathode material because of its high specific energy density, environmental non-toxicity, and low cost. $MS_2$ (M = Fe, Ni, Co) cathodes have been explored as novel candidates for thermal batteries in many studies; however, the discharge characteristics (1, 2, 3 plateau) of single cells in thermal batteries with different cathodes have not been elucidated in detail. In this study, we independently analyzed the discharge voltage and calculated the total polarizations of single cells using $MS_2$ cathodes. Based on the results of this study, we propose $NiS_2$ as a potential cathode material for use in thermal batteries.

나노 셀 OLED의 열 분포 해석 (Thermal Distribution Analysis in Nano Cell OLED)

  • 장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제37권3호
    • /
    • pp.309-313
    • /
    • 2024
  • The key to determining the lifetime of OLED device is how much brightness can be maintained. It can be said that there are internal and external causes for the degradation of OLED devices. The most important cause of internal degradation is bonding and degradation in the excited state due to the electrochemical instability of organic materials. The structure of OLED modeled in this paper consists of a cathode layer, electron injection layer (EIL), electron transport layer (ETL), light emission layer, hole transport layer (HTL), hole injection layer (HIL), and anode layer on a glass substrate from top to bottom. It was confirmed that the temperature generated in OLED was distributed around the maximum of 343.15 K centered on the emission layer. It can be seen that the heat distribution generated in the presented OLED structure has an asymmetrically high temperature distribution toward the cathode, which is believed to be because the sizes of the cathode and positive electrode are asymmetric. Therefore, when designing OLED, it is believed that designing the structures of the cathode and anode electrodes as symmetrically as possible can ensure uniform heat distribution, maintain uniform luminance of OLED, and extend the lifetime. The thermal distribution of OLED was analyzed using the finite element method according to Comsol 5.2.

Top Emission Organic Light Emitting Diode with Transparent Cathode, Ba-Ag Double Layer

  • Lee, Chan-Jae;Moon, Dae-Gyu;Han, Jeong-In
    • Journal of Information Display
    • /
    • 제7권3호
    • /
    • pp.23-26
    • /
    • 2006
  • We fabricated top emission organic light emitting diode (TEOLED) with transparent metal cathode Barium and Silver bilayer. Very thin Ba/Ag bilayer was deposited on the organic layer by thermal evaporation. This cathode showed high transmittance over 70% in visible range, and the device with a Ba-Ag has a low turn on voltage and good electrical properties.

Surface-modified Li[Ni0.8Co0.15Al0.05]O2 Cathode Fabricated using Polyvinylidene Fluoride as a Novel Coating

  • Lee, Jun Won;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권4호
    • /
    • pp.263-268
    • /
    • 2016
  • This study describes the effect of coating the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ cathode surface with a homogeneous carbon layer produced by carbonization of polyvinylidene fluoride (PVDF) as a novel organic source. The phase integrity of the above cathode was not affected by the carbon coating, whereas its rate capability and cycling performance were enhanced. Similarly, the cathode thermal stability was also improved after coating, which additionally protected the cathode surface against the reactive electrolyte containing hydrofluoric acid (HF). The results show that coating the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ cathode with carbon using the PVDF precursor is an effective approach to enhance its electrochemical properties.

평면 음극선관의 재생률 향상을 위한 유리재료의 열적 특성에 관한 연구 (A Study on the Thermal Properties of Glass for Effective Salvage Process of Flat Cathode-ray Tube)

  • 박상후;이부윤;김원진;허보석
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.1988-1994
    • /
    • 2001
  • The CRT(Cathode-ray Tube) of salvage is a process of separating the panel and funnel to recycle a cathode-ray tube. In this paper, the thermal properties of glass for CRT were studied to improve its recycling ratio. In the salvage process, several patterns of breakage, as called 'comer pull', were easily generated on the sealing surface of panel or funnel glass due to the residual tensile stress, which had correlations with some parameters of the manufacturing process of CRT and the initial material properties of glass. Finite element analyses and experimental approaches on the flit sealing process were carried out to obtain the major characteristic of glass related to the residual stress. From this study, it was identified that the thermal expansion coefficient of glass had much influence on the residual stress of panel glass after frit sealing process. Therefore, the optimal conditions of thermal properties for CRT glass were proposed to achieve an effective salvage process. By using these optimal conditions, the size of comer pull on the panel and funnel glass was reduced to 10% level compared with the original size, and the recycling ratio of CRT was increased in the salvage process.

Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating

  • Yoo, Gi-Won;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권2호
    • /
    • pp.179-184
    • /
    • 2016
  • The interface between the surface of a cathode material and the electrolyte gives rise to surface reactions such as solid electrolyte interface (SEI) and chemical side reactions. These reactions lead to increased surface resistance and charge transfer resistance. It is consequently necessary to improve the electrochemical characteristics by suppressing these reactions. In order to suppress unnecessary surface reactions, we coated cathode material using polypropylene (PP). The PP coating layer effectively reduced the SEI film that is generated after a 4.3 V initial charging process. By mitigating the formation of the SEI film, the PP-coated Li[(Ni0.6Co0.1Mn0.3)0.36(Ni0.80Co0.15Al0.05)0.64)]O2(NCS) electrode provided enhanced transport of Li+ ions due to reduced SEI resistance (RSEI) and charge transfer resistance (Rct). The initial charge and discharge efficiency of the PP-coated NCS electrode was 96.2 % at a current density of 17 mA/g in a voltage range of 3.0 ~ 4.3 V, whereas the efficiency of the NCS electrode was only 94.7 %. The presence of the protective PP layer on the cathode improved the thermal stability by reducing the generated heat, and this was confirmed via DSC analysis by an increased exothermic peak.

Use of Speckle Pattern for Monitoring Thermal Energy Behavior of Battery Cathode

  • Kim, Byungwhan;Jang, Junyoung
    • Journal of the Optical Society of Korea
    • /
    • 제20권3호
    • /
    • pp.396-400
    • /
    • 2016
  • Laser speckle patterns were used to monitor variations of thermal voltages of a cathode during a battery discharge. Discharge voltages measured with an oscilloscope were utilized as a figure of merit of thermal voltages in Zn metal. Using an optical imaging system, speckle patterns were taken for zinc metal surface over a time period of 3 minutes. Pixel sum distribution functions (PSDFs) were extracted from speckle patterns. Accumulated pixel sums quantified from PSDFs over an optimized grayscale range strongly correlated with discharge voltages. This suggested that dark matter or particles may have the capability of both absorbing and radiating thermal energies simultaneously. The black body-like properties were able to be validated by identifying coincidences with distinct features of a black body spectrum. The pixels belonging to the grayscale range were confirmed to represent dark matter of a speckle pattern. It was clear that dark matter was part of surface plasmon carriers. The proposed sensing system can be applied to monitor thermal energy variations in any material.

고체산화물 연료전지용 (La, Sr)$MnO_3$ 양극에 대한 Co 첨가효과 (Effect of Co Dopant on the (La, Sr)$MnO_3$ Cathode for Solid Oxide Fuel Cell)

  • 김재동;김구대;이기태
    • 한국세라믹학회지
    • /
    • 제37권6호
    • /
    • pp.612-616
    • /
    • 2000
  • The effect of Co dopant on the (La, Sr)MnO3 cathode was investigated. La2Zr2O7 and SrZrO3 were formed as the reaction products between YSZ and LSMC. The reactivity of LSMC with YSZ increased with increasing Co content. However, the cathodic polarization resistance decreased with increasing Co doping. Therefore, doping Co at Mn site in the (La, Sr)MnO3 cathode was effective on controlling the polarization resistance of the cathode. The polarization property of LSMC-YSZ composite(60 wt%: 40 wt%) cathode was better than that of LSMC single cathode.

  • PDF

중온형 고체산화물 연료전지를 위한 YSZ 전해질에서의 고성능 공기극 연구 (Study on high performance cathode on YSZ electrolyte for intermediate-temperature solid oxide fuel cells(IT-SOFC))

  • 이창보;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.368-371
    • /
    • 2006
  • [ $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ ] cathode as a high performance cathode on YSZ electrolyte was studied by analyzing impedance spectra. It was shown that cathode property of $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ is bet ter than that of$La_{0.8}Sr_{0.2}CoO_3$. At $700^{\circ}C$ in air environment, $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_3$ cathode on CGO- layered YSZ electrolyte showed very low area specific resistance of $0.14{\Omega}cm^2$, which is low enough for intermediate-temperature sol id oxide fuel cells. This is because material properties of ionic conductivity and thermal expansion compatibility with electrolyte were optimized. Judging from activation energy and oxygen part i al pressure dependance of cathode property, it was noted that oxygen surface exchange kinetics is dominantly influential on cathode property in higher temperature region than $700^{\circ}C$ and oxygen self-diffusion in cathode material is more influential in lower temperature region.

  • PDF

The Effect of Surface Modification with La-M-O (M = Ni, Li) on Electrochemical Performances of Li[Ni0.8Co0.15Al0.05]O2 Cathode

  • Ryu, Jea-Hyeok;Kim, Seuk-Buom;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권3호
    • /
    • pp.657-660
    • /
    • 2009
  • The surface of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ cathode particle was modified by lanthanum based oxide to improve electrochemical property and thermal stability. The XRD pattern of surface layer was indexed with that of $La_4NiLiO_8$. The discharge capacity of modified electrode was higher than that of pristine sample, specially at fast charge-discharge rate and high cut-off voltage. In the DSC profile of the charged sample, the generation of heat by exothermic reaction was decreased by surface modification. Such enhancement may by attributed to the presence of stable lanthanum based oxide, which effectively suppressd the reaction between electrode and electrolyte on the surface of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ electrode.