• Title/Summary/Keyword: Cathode.

Search Result 2,940, Processing Time 0.035 seconds

Study of changes in the kinetic parameters of corrosion on the macrocell current induced by the repair of reinforced concrete structures - Results of numerical simulation

  • Mostafa Haghtalab;Vahed Ghiasi;Aliakbar Shirzadi Javid
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.287-302
    • /
    • 2023
  • Corrosion of reinforcing bars in reinforced concrete structures due to chloride attack in environments containing chloride ions is one of the most important factors in the destruction of concrete structures. According to the abundant reports that the corrosion rate around the repair area has increased due to the macro-cell current known as the incipient anode, it is necessary to understand the effective parameters. The main objective of this paper is to investigate the effect of the kinetic parameters of corrosion including the cathodic Tafel slope, exchange current density, and equilibrium potential in repair materials on the total corrosion rate and maximum corrosion rate in the patch repair system. With the numerical simulation of the patch repair system and concerning the effect of parameters such as electromotive force (substrate concrete activity level), length of repair area, and resistivity of substrate and repair concrete, and with constant other parameters, the sensitivity of the macro-cell current caused by changes in the kinetic parameters of corrosion of the repairing materials has been investigated. The results show that the maximum effect on the macro-cell current values occurred with the change of cathodic Tafel slope, and the effect change of exchange current density and the equilibrium potential is almost the same. In the low repair extant and low resistivity of the repairing materials, with the increase in the electromotive force (degree of substrate concrete activity) of the patch repair system, the sensitivity of the total corrosion current reduces with the reduction in the cathode Tafel slope. The overall corrosion current will be very sensitive to changes in the kinetic parameters of corrosion. The change in the cathodic Tafel slope from 0.16 to 0.12 V/dec and in 300 mV the electromotive force will translate into an increase of 200% of the total corrosion current. While the percentage of this change in currency density and equilibrium potential is 53 and 43 percent, respectively. Moreover, by increasing the electro-motive force, the sensitivity of the total corrosion current decreases or becomes constant. The maximum corrosion does not change significantly based on the modification of the corrosion kinetic parameters and the modification will not affect the maximum corrosion in the repair system. Given that the macro-cell current in addition to the repair geometry is influenced by the sections of reactions of cathodic, anodic, and ohmic drop in repair and base concrete materials, in different parameters depending on the dominance of each section, the sensitivity of the total current and maximum corrosion in each scenario will be different.

Characteristics of Organic Material Removal and Electricity Generation in Continuously Operated Microbial Fuel Cell (연속류식 미생물연료전지의 유기물 제거 및 전기 발생 특성)

  • Kim, Jeong-Gu;Jeong, Yeon-Koo;Park, Song-In
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.57-65
    • /
    • 2010
  • Two types of microbial fuel cells(MFC) were continuously operated using synthetic wastewater. One was conventional two-chambered MFC using proton exchange membrane(PEM-MFC), the other was upflow type membraneless MFC(ML-MFC). Graphite felt was used as a anode in PEM-MFC. In membraneless MFC, two MFCs were operated using porous RVC(reticulated vitreous carbon) as a anode. Graphite felt was used as a cathode in all experiments. In experiment of PEM-MFC, the COD removal rate based on the surface area of anode was about $3.0g/m^2{\cdot}d$ regardless of organic loading rate. And the coulombic efficiency amounted to 22.4~23.4%. The acetic acid used as a fuel was transferred through PEM from the anodic chamber to cathodic chamber. The COD removal rate in ML-MFC were $9.3{\sim}10.1g/m^2{\cdot}d$, which indicated the characteristics of anode had no significant effects on COD removal. Coulombic efficiency were 3.6~3.7 % in both cases of ML-MFC experiments, which were relatively small. It was also observed that the microbial growth in cathodic chamber had an adverse effects on the electricity generation in membraneless MFC.

Removing High Concentration Nitrogen by Electrolysis (전기분해에 의한 고농도 질소 제거의 특성)

  • Gil, Dae-Soo;Lee, Byung-Hun;Choi, Hae-Kyoung;Kwon, Dong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.265-277
    • /
    • 2000
  • Laboratory experiments were conducted to investigate characteristics for removing ammonia-nitrogens by electrolysis methods. A stainless steel plate is used as the cathode and either $IrO_2{\backslash}Ti$ plate serves as the anode. Experiments were conducted to examine the effects of the operating conditions, such as the current density, retention time, electrode gap, $Cl^-/NH_4{^+}-N$ on the $NH_4{^+}-N$ removal efficiency. Possible optimum range for these operating variables are experimentally determined. The $NH_4{^+}-N$ removal efficiencies between plate type anode and net type anode were about same effect, but electrolytic power using net type anode is low than plate type anode. The $Cl^-/NH_4{^+}-N$ ratio was about $20.0kgCl^-/kgNH_4{^+}-N$ when $NH_4{^+}-N$ removal obtained 73 %, $Cl^-/NH_4{^+}-N$ ratio needs $27.6kgCl^-/kgNH_4{^+}-N$ so as to $NH_4{^+}-N$ completely remove. The removal efficiency of $NH_4{^+}-N$ increase with current density, retention time and $Cl^-/NH_4{^+}-N$ ratio, but decreased with increasing electrode gap. The relationship of operating conditions and $NH_4{^+}-N$ removal efficiencies are $$NH_4{^+}-N_{re}(%)=14.5364(Current\;density)^{0.7093}{\times}(HRT)^{1.0060}{\times}(Gap)^{-0.9926}{\times}(Cl^-/NH_4{^+}-N)^{1.0024}$$ With adding COD or/and alkalinity, relationships are $$NH_4{^+}-N_{re}(%)=9.8408(Current\;density)^{0.6232}{\times}(HRT)^{1.0534}$$ There existed a competition between the removals for $NH_4{^+}-N$ and $COD_{Cr}$ during electrolysis, the removal of $NH_4{^+}-N$ was shown to be dominant. $NH_4{^+}-N$ removal was high as addition of glucose and alkalinity.

  • PDF

A STUDY ON THE GALVANIC CORROSION OF TITANIUM USING THE IMMERSION AND ELECTROCHEMICAL METHOD (침적법과 전기화학법을 이용한 티타늄의 갈바닉 부식에 관한 연구)

  • Kay, Kee-Sung;Chung, Chae-Heon;Kang, Dong-Wan;Kim, Byeong-Ok;Hwang, Ho-Gil;Ko, Yeong-Mu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.3
    • /
    • pp.584-609
    • /
    • 1995
  • The purpose of this study was to evaluate the difference of the galvanic corrosion behaviour of the titanium in contact with gold alloy, silva-palladium alloy, and nickel-chromium alloy using the immersion and electrochemical method. And the effects of galvallit couples between titanium and the dental alloys were assessed for their usefulness as materials for superstructure. The immersion method was performed by measuring the amount of metal elementsreleased by Inductivey coupled plasma emission spectroscopy(ICPES) The specimen of fifteen titanium plates, the five gold alloy, five silver-palladium, five nickel-chromium plates, and twenty acrylic resin plates ware fabricated, and also the specimen of sixty titanium plugs, the thirty gold alloy, thirty silver-palladium, and nickelc-hromium plugs were made. Thereafter, each plug of gold alloy, silver-palladium, and nickel-chromium inserted into the the titanium and acrylic resin plate, and also titanium plug inserted into the acrylic resin plate. The combination specimens uf galvanic couples immersed in 70m1 artificial saliva solution, and also specimens of four type alloy(that is, titanium, gold, silver-palladium and nickel-chromium alloy) plugs were immersed solely in 70m1 artificial sativa solution. The amount of metal elements released was observed during 21 weeks in the interval of each seven week. The electrochemical method was performed using computer-controlled potentiosta(Autostat 251. Sycopel Sicentific Ltd., U.K). The wax patterns(diameter 11.0mm, thickness,in 1.5mm) of four dental casting alloys were casted by centrifugal method and embedded in self-curing acrylic resin to be about $1.0cm^2$ of exposed surface area. Embedded specimens were polished with silicone carbide paper to #2,000, and ultrasonically cleaned. The working electrode is the specimen of four dental casting alloys, the reference electrode is a saturated calmel electrode(SCE) and the ounter electrode is made of platinum plate. In the artificial saliva solution, the potential scanning was carried out starting from-700mV(SCE) TO +1,000mV(SCE) and the scan rate was 75mV/min. Each polarization curve of alloy was recorded automatically on a logrithmic graphic paper by XY recorder. From the polarization curves of each galvanic couple, corrosion potential and corrosion rates, that is, corrosion density were compared and order of corrosion tendency was determined. From the experiments, the following results were obtained : 1. In the case of immersing titanium, gold alloy, silver-palladium alloy, and nickel-chromium alloysolely in the artificial saliva solution(group 1, 2, 3, and 4), the total amount of metal elements released was that group 4 was greater about 2, 3 times than group 3, and about 7.8 times than group 2. In the case of group 1, the amount of titanium released was not found after 8 week(p<0.001). 2. In the case of galvanic couples of titanium in contact with alloy(group 5, 6), the total amount of metal elements released of group 5 and 6 was less than that of group 7, 8, 9, and 10(p<0.05). 3. In the case of galvanic couples of titanium in contact with silver-palladium alloy(group 7, 8), the total amount of metal elements released of group 7 was greater about twice than that of group 5, and that of group 8 was about 14 times than that of group 6(p<0.05). 4. In the case of galvanic couples of titanium in contact with nickel-chromium alloy(group 9, 10), the total amount of metal elements released of group 9 and 10 was greater about 1.8-3.2 times than that of group 7 and 8, and was greater about 4.3~25 times than that of group 5 and 6(p<0.05). 5. In the effect of galvanic corrosion according to the difference of the area ratio of cathode and anode, the total amount of metal elements released was that group 5 was greater about 4 times than group 6, group 8 was greater about twice than group 7, and group 10 was greater about 1.5 times than group 9(p<0.05). 6. In the effect of galvanic corrosion according to the elasped time during 21 week in the interval of each 7 week, the amount of metal elements released was decreased markedly in the case of galvanic couples of the titanium in contact with gold alloy and silver-palladium alloy but the total amount of nickel and beryllium released was not decreased markedly in the case of galvanic couples of the titanium in contact with nickel-chromium alloy(p<0.05). 7. In the case of galvanic couples of titanium in contact with gold alloy, galvanic current was lower than any other galvanic couple. 8. In the case of galvanic couples of titanium in contact with nickel-chromium alloy, galvanic current was highest among other galvanic couples.

  • PDF

A Study on Salt Removal in Controlled Cultivation Soil Using Electrokinetic Technology (전기동력학 기술을 이용한 시설재배지 토양의 염류제거 효과연구)

  • Kim, Lee Yul;Choi, Jeong Hee;Lee, You Jin;Hong, Soon Dal;Bae, Jeong Hyo;Baek, Ki Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1230-1236
    • /
    • 2012
  • To verify that the electrokinetic remediation is effective for decreasing salinity of fields of the plastic-film house, field tests for physical property, chemical property, and crop productivity of soils have been conducted. The abridged result of those tests is as follows. In the EK treatment, the electrokinetic remediation has been treated at the constant voltage (about 0.8 V $cm^{-1}$) for fields of the farm household. At this time, an alternating current (AC) 220 V of the farm household was transformed a direct current. The HSCI (High Silicon Cast Iron) that the length of the stick for a cation is 20cm, and the Fe Plate for an anion have been spread out on the ground. As the PVC pipe that is 10 cm in diameter was laid in the bottom of soils, cations descend on the cathode were discharged together. For soil physical properties according to the EK treatment, the destruction effect of soil aggregate was large, and the infiltration rate of water was increased. However, variations of bulk density and porosity were not considerable. Meanwhile, in chemical properties of soils, principal ions of such as EC, $NO_3{^-}$-N, $K^+$, and $Na^+$ were better rapidly reduced in the EK treated control plot than in the untreated control plot. And properties such as pH, $P_2O_5$ and $Ca^{2+}$ had a small impact on the EK. For cropping season of crop cultivation according to the EK treatment, decreasing rates of chemical properties of soils were as follows; $NO_3{^-}$-N 78.3% > $K^+$ 72.3% > EC 71.6% $$\geq_-$$ $Na^+$ 71.5% > $Mg^{2+}$ 36.8%. As results of comparing the experimental plot that EK was treated before crop cultivation with it that EK was treated during crop cultivation, the decreasing effect of chemical properties was higher in the case that EK was treated during crop cultivation. After the EK treatment, treatment effects were distinct for $NO_3{^-}$-N and EC that a decrease of nutrients is clear. However, because the lasting effect of decreasing salinity were not distinct for the single EK treatment, fertilization for soil testing was desirable carrying on testing for chemical properties of soils after EK treatments more than two times. In the growth of cabbages according to the EK treatment, the rate of yield increase was 225.5% for the primary treatment, 181.0% for the secondary treatment, and 124.2% for third treatment compared with the untreated control plot. The yield was increased by a factor of 130.0% for the hot pepper at the primary treatment (Apr. 2011), 248.1% for the lettuce at the secondary treatment (Nov.2011), and 125.4% for the young radish at the third treatment (Jul. 2012). In conclusion, the effect of yield increase was accepted officially for all announced crops.

The Fabrication of HCD Ion Plating Apparatus and XPS Analysis on the Fine Color Changes of TiN Films on Stainless Steel (HCD 이온플레이팅 장치 제작 및 Stainless Steel 위에 TiN 박막의 미세색상변화에 따른 XPS분석)

  • Park, Moon Chan;Lee, Jong Geun;Choi, Kwang Ho;Cha, Jung Won;Kim, Eung Soon;Park, Jin Hong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.4
    • /
    • pp.361-366
    • /
    • 2010
  • Purpose: HCD ion plating apparatus by hollow cathod discharge method was fabricated and TiN films were deposited on stainless steel by this apparatus with increasing in $N_2$ gas flow and the fine color changes of TiN films were analyzed. Methods: The spectroradiometer and spectrophotometer were used to observe optically the fine color changes of TiN thin films, and XPS was used to analyze the compositions of TiN thin films with increasing in $N_2$ gas flow. Results: The color coordinate of TiN thin film with $N_2$ 120 sccm gas flow showed (0.382, 0.372) which had the mixed colors of gold and silver, and the color coordinate changed to the increasing value of (x,y) with increasing in $N_2$ gas flow which indicated the deep gold color. It was found that the slopes of the reflectances at 550nm were increased with increasing in $N_2$ gas flow. And from the Ti scans using XPS, it was found that the peak heights of 455 eV derived from TiN composition were increased with increasing in $N_2$ gas flow, while the peak heights of 459 eV from $TiO_2$ composition were decreased. Conclusions: The results obtained above were that the color of TiN film with 120 sccm $N_2$ gas flow had been observed from the mixed color of silver and gold due to TiC, $N_2$, TiN on the surface and TiN, $N_2$ inside film, and the color of TiN films changed a deep gold color with increasing in $N_2$ gas flow due to increasing TiN composition.

Removal of Heavy Metal Ions in the Aqueous Solution Using Anodic Alumina and Retriculate Vitreous Carbon Electrodes (Anodic Alumina와 Retriculate Vitreous Carbon을 전극으로 사용하여 수용액에서 중금속이온의 제거)

  • Cho, Seung-Koo;Lee, Keon-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.120-129
    • /
    • 2003
  • The anodic alumina is synthesized using 0.3M oxalic acid and the barrier layers of the anodic alumina are removed using the 20wt% $H_2SO_4$ solution. The structure of the anodic alumina is analyzed by XRD and SEM. It is observed by SEM that the size of anodic alumina pore is about 60nm. And the uniformity of the anodic alumina surface under the 20wt% $H_2SO_4$ solution is poorer than the unifomity of the the normal anodic alumina surface. The anodic alumina and the carbon are used cathode and anode in$Cd(NO_3)_2{\cdot}4H_2O$, $Co(NO_3)_2{\cdot}6H_2O$ and $PbSO_4$ solutions. In this study, the constant D.C. electrical current is flowed in each solution for 24hours. It is found that the voltages so far as 4.6, 3.4 and 5.1V at $Cd(NO_3)_2{\cdot}4H_2O$, $Co(NO_3)_2{\cdot}6H_2O$ and $PbSO_4$ solutions increase with increasing the flowing current time and after the voltage does not change which values are 4.2, 2.7 and 2.4V, respectively. The amount of metal ions in solutions decrease with increasing the flowing current time until the flowing current time is 18hours and the metals are formed at the surface of anodic alumina. After the metal ions are removed using the anodic alumina, and $Cd^{2+}$, $Co^{2+}$ and $Pb^{2+}$ ions are removed again using flow cell with retriculate vitreous carbon(RVC) working electrode. The concentration of $Cd^{2+}$, and $Co^{2+}$ions decrease until the flowing time of the solutions is 20minutes and the concentration of $Pb^{2+}$ ion decreases until that time is 30minutes. In this case, the removal effects of $Cd^{2+}$, $Co^{2+}$ and $Pb^{2+}$ ions are 34.78, 28.79 and 86.38%, respectively. And it is possible that both $Cd^{2+}$ and $Co^{2+}$ions are adsorbed in pore of RVC at the same time and the removal effects of $Cd^{2+}$ and $Co^{2+}$ions are 32.30 and 31.37%.

  • PDF

The Phase-Shift Method for the Langmuir Adsorption Isotherms of Electroadsorbed Hydrogens for the Cathodic H2 Evolution Reactions at the Poly-Pt Electrode Interfaces (다결정 Pt 전극계면에서 음극 H2 발생반응을 위한 전착된 수소의 Langmuir 흡착등온식에 관한 위상이동 방법)

  • Chun, Jang H.;Jeon, Sang K.;Lee, Jae H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.131-142
    • /
    • 2002
  • The Langmuir adsorption isotherms of the under-potentially deposited hydrogen (UPD H) and the over-potentially deposited hydrogen (OPD H) at the poly-Pt/0.5M $H_2SO_4$ and 0.5 M LiOH aqueous electrolyte interfaces have been studied using cyclic voltammetric and ac impedance techniques. The behavior of the phase shift $(0^{\circ}{\leq}{-\phi}{\leq}90^{\circ})$ for the optimum intermediate frequency corresponds well to that of the fractional surface coverage $(1{\geq}{\theta}{\geq}0)$ at the interfaces. The phase-shift method, i.e., the phase-shift profile $({-\phi}\;vs.\;E)$ for the optimum intermediate frequency, can be used as a new electrochemical method to determine the Langmuir adsorption isotherms $({\theta}\;vs.\;E)$ of the UPD H and the OPD H for the cathodic $H_2$ evolution reactions at the interfaces. At the poly-Pt/0.5M $H_2SO_4$ aqueous electrolyte interface, the equilibrium constant (K) and the standard free energy $({\Delta}G_{ads})$ of the OPD H are $2.1\times10^{-4}$ and 21.0kJ/mol, respectively. At the poly-Pt/0.5M LiOH aqueous electrolyte interface, K transits from 2.7(UPD H) to $6.2\times10^{-6}$ (OPD H) depending on the cathode potential (E) and vice versa. Similarly, ${\Delta}G_{ads}$ transits from -2.5kJ/mol (UPD H) to 29.7kJ/mol (OPD H) depending on I and vice versa. The transition of K and ${\Delta}G_{ads}$ is attributed to the two distinct adsorption sites of the UPD H and the OPD H on the poly-Pt surface. The UPD H and the OPD H on the poly-Pt surface are the independent processes depending on the H adsorption sites themselves rather than the sequential processes for the cathodic $H_2$ evolution reactions. The criterion of the UPD H and the OPD H is the H adsorption sites and processes rather than the $H_2$ evolution reactions and potentials. The poly-Pt wire electrode is more efficient and useful than the Pt(100) disc electrode for the cathodic $H_2$ evolution reactions in the aqueous electrolytes. The phase-shift method is well complementary to the thermodynamic method rather than conflicting.

Initial Charge/Discharge of $LiCoO_2$ Composite Cathode with Various Content of Conductive Material for the Lithium ion Battery (리튬이온전지용 $LiCoO_2$정극의 도전재료에 따른 초기 충방전 특성)

  • Doh Chil-Hoon;Moon Seong-In;Yun Mun-Soo;Yun Suong-Kyu;Yum Duk-Hyung;Park Chun-Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.123-129
    • /
    • 1999
  • Initial electrochemical characteristics of $LiCoO_2$ electrode for lithium ion battery with various content of super s black as conductive material were evaluated through the charge/discharge with the potential range of 4.3V to 2.0V versus $Li^+/Li^+$. The rate of C/4 and C/2 by the 3 electrode test cell composed with an electrolytic solution of 1 mol/l $LiPF_6/EC+DEC(1:3\;by\; weight)$. Lithium was used as reference electrode. High impedance charge behavior was observed at early stage of charge. In the case of $3\%w/w$ of super s black as conductive material, the specific resistance of the high impedance releasing was $3.82\;{\Omega}\;{\cdot}\;g-LiCoCo_2$ at the current density of $0.5 mA/cm^2$, which corresponds 7 times of the specific resistance of electrode $(0.728 g-LiCoO_2)$. At second charge, the specific resistance of the high impedance releasing was 63 mn · g-Lico02, which corresponds 12eio of the specific resistance of electrode and only $1.7\%$ of that of the first charge. The first charge and discharge specific capacities at C/4 rate were 160-161 and $153\~155mAh/g-LiCoO_2$, respectively, to lead $95.4\~96.4\%$ of coulombic efficiencies and ca. $6 mAh/g-LiCoO_2$ of initial irreversible specific capacity. Specific resistance at the end of charge and rest showed low value at content of super s black between 2 and $7\%w/w$, which agreed with characteristics of irreversible specific capacity. Capacity densities were reduced by the increasing the content of conductive material. They were 447 and 431mAh/ml when 2 and $2.9\%w/w$ of super s black were used, respectively, at the rate of C/4.

Electrochemical Treatment of Dye Wastewater Using Fe, RuO2/Ti, PtO2/Ti, IrO2/Ti and Graphite Electrodes (RuO2/Ti, PtO2/Ti, IrO2/Ti 및 흑연전극을 이용한 염료폐수의 전기화학적 처리)

  • Kim, A Ram;Park, Hyun Jung;Won, Yong Sun;Lee, Tae Yoon;Lee, Jae Keun;Lim, Jun Heok
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.16-28
    • /
    • 2016
  • Textile industry is considered as one of the most polluting sectors in terms of effluent composition and volume of discharge. It is well known that the effluents from textile dying industry contain not only chromatic substances but also large amounts of organic compounds and insolubles. The azo dyes generate huge amount of pollutions among many types of pigments. In general, the electrochemical treatments, separating colors and organic materials by oxidation and reduction on electrode surfaces, are regarded as simpler and faster processes for removal of pollutants compared to other wastewater treatments. In this paper the electrochemical degradation characteristics of dye wastewater containing CI Direct Blue 15 were analyzed. The experiments were performed with various anode materials, such as RuO2/Ti, PtO2/Ti, IrO2/Ti and graphite, with stainless steel for cathode. The optimal anode material was located by changing operating conditions like electrolyte concentration, current density, reaction temperature and initial pH. The degradation efficiency of dye wastewater increased in proportion to the electrolyte concentration and the current density for all anode materials, while the temperature effect was dependent on the kind. The performance orders of anode materials were RuO2/Ti > PtO2/Ti > IrO2/Ti > graphite in acid condition and RuO2/Ti > IrO2/Ti > PtO2/Ti > graphite in neutral and basic conditions. As a result, RuO2/Ti demonstrated the best performance as an anode material for the electrochemical treatment of dye wastewater.